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This article uses multi-precision floating point computations to study the following

three series that calculate π:
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More specifically, this study uncovers correction terms that improve the accuracy

of each series. These sequences of correction terms lead to the names I chose above

for the three series. The results here are experimental, without mathematical proofs

of their correctness, and they fall out using only arithmetic, needing no number the-

ory or other mathematics. These results are surprising for being so easily obtained,

although the same results can be found and proved using sophisticated mathemati-

cal techniques.

There is a long history of numerical experiments by mathematicians—for ex-

ample, Gauss conducted extensive experiments to check his hypotheses. More re-

cent discussions of experimental mathematics are in [1].

The basic technique was described for the series S1 in [2] and [3]. I give this

description in the first section below, and then in the next two sections I carry out

the same experiments for series S2 and S3.

The multi-precision calculations here were easy to program and proceeded re-

markably quickly using the Python package mpmath, which includes a full set of

transcendental functions. At the end of this article I give a short example program.
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Series S1: Euler

The first number given below is π to 60 significant decimal digits. The second

number is the sum of 107 terms of Series S1:

3.141592653589793238462643383279502884197169399375105820974944 (Pi)
3.141592553589793238462893383279502881072169399375201133474944 (Sum)

1 2 3 4 5 6

The series S1 is a standard example of one that converges extremely slowly—in fact

for each extra digit of π one needs to add up ten times as many terms. Sure enough,

with ten million terms, one only gets π accurate to 6 decimal places. But following

the first incorrect digit at place 7, are 14 correct digits of π. (The incorrect digits are

given in underlined boldface.) In [2] and [3], Borwein describes this phenomenon

and says it was first noticed in 1988.

One must first realize that the formula deals with so-called “real” numbers,

those mysterious entities. Inside a computer, the numbers are floating point, as

a partial and finite representation of some real numbers. In most computers the

representation is in binary, as in mpmath, while in calculators the representation

uses decimal numbers. In spite of this, the strange results in the table above, where

there are far more correct digits of π than one would expect, come from displaying

numbers in decimal form, and in adding up a number of terms that is a power of 10.

All this suggests the existence of a sequence of correction terms that would

make the final sum much more accurate. To “correct” the first error of the sum, the

erroneous digit in position 7, one needs to add in 1 × 10(−7). If you calculate sums

for other powers of 10, you get similar results: Using N = 10n terms, the digit in

position n is always one less than the true value. This leads to a possible correction

term of 1 × 10−n or 1/N. Note that it’s essential that any proposed correction term

be a function of N, the number of terms added up.

Each segment of bold digits represents a potential correction term, so in the

example above, there are four such segments, representing four correction terms.

You always use the power of 10 of the rightmost bold digit. Notice that the fourth

segment has a non-bold embedded digit, the result of chance.

Keeping in mind that N = 107, let’s list the first four correction terms:

1: (6 − 5)10(−7) = 1/N

2: (64 − 89)10(−23) = −25/(100N3) = −1/(4N
3)

3: (4197 − 1072)10(−39) = 55/(104N5) = 5/(42
N

5)

4: (1058209 − 2011334)10(−55) = −(61 · 56)/(N7106) = −61/(43
N

7)
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Next, let’s look at how the first two correction terms behave with other values

of N. First for N = 500000, each correction term still has all trailing zeros, so it

only affects a few digits and nothing after that. This is why this scheme uncovers

these terms. In the second example below, I chose a (sort of) random N = 314159.

In this case the correction terms are filled with digits and affect every trailing digit

of the sum, but they still produce increasingly accurate values for π.

N = 500000:

3.1415926535897932384626433832795028841971 (Pi)
3.1415906535897932404626433832695028841972 (Original sum)

0.0000020000000000000000000000000000000000 (+1st correction)
3.1415926535897932404626433832695028841972 (Result)

0.0000000000000000020000000000000000000000 (–2nd correction)
3.1415926535897932384626433832695028841972 (Result)

N = 314159: (Odd N, so signs of correction terms are reversed)

3.1415958366913437191649824213178400843524 (Original sum)

0.0000031831015504887652430775499030745577 (–1st correction)
3.1415926535897932303997393437679370097946 (Result)

0.0000000000000000080629040396136839195212 (+2nd correction)
3.1415926535897932384626433833816209293158 (Result)

1 2 3 4

It turns out that five times a power of ten works even better in calculating these

correction terms, and more significant digits also helps. Using N = 5×107, and 140

digits of accuracy, it’s easy to find the 5th through the 9th terms. These numbers

are too long for one line, so the first 70 digits are listed first, and below that the next

70 digits, for 140 altogether.

3.1415926535897932384626433832795028841971693993751058209749445923078164 (Pi)
3.1415926335897932384626453832795028841961693993751058221949445923078136 (Sum)

1 2 3 4 5 6 7

0628620899862803482534211706798214808651328230664709384460955058223172 (Pi)
3628620899863813902534211701392684808651368102860909384073124815323177 (Sum)

8 9 0 1 2 3 4

5: (640 − 363)/1071 = (277 · 5)/(44591063) = 1358/(44
N

9)

6: (280348 − 381390)/1088 = −101042/(2 · 2115111077) = 50521/(45
N

11)

7: (679821 − 139268)/10103 = 540553 · 513/(212512N13) = 2702765/(46
N

13)

In the same way it’s easy to calculate the 8th and 9th terms from the data above.
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The denominators of these terms are known as Euler Numbers, discovered and

investigated by Euler, although the sum of the series was determined by Gregory

and Leibnitz much earlier. Here are the first few correction terms and values of the

first few Euler Numbers. There are equations defining the entire infinite sequence

of these numbers, and an immense amount of work is associated with them.
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S1: Euler

Euler

Numbers

E0 1

E2 -1

E4 5

E6 -61

E8 1385

E10 -50521

E12 2702765

E14 -199360981

E16 19391512145

. . .

Series S2: Genocchi

The series S2 converges to π2/12 = 0.822467 . . . . This number is displayed below

to 150 decimal digits, and after that is the sum of 107 terms of the series. The

incorrect digits are identified as before. Again each segment of bold digits may

represent a correction term. The given sum has 11 such segments, representing the

first 11 correction terms. (Sequence 10 has a correct digit of π inside it.)

0.82246703342411321823620758332301259460947495060339921886777911468500373520160043
0.82246703342410821823670758332301258960947495060354921886777910618500373520237543

1 2 3 4 5 6 7 8

6916814450309879352652002159481168595339814362343502503893967551473165 (π2/12)
6916814346659879352671115659481163947494814363784533453893412725020665 (Sum)

9 0 1 2 3 4 5

When I first computed these correction terms, I had never heard of Genocchi Num-

bers, so it was exciting for me when the On-Line Encyclopedia of Integer Se-

quences immediately identified the sequence of numerators as these numbers. I

give the correction terms at the end of this section. It’s easy to determine them in

the same way as in the previous section. Let’s derive three of the later ones:

9: (8595339 − 3947494)10(−120) = 5 · 929569/10120 = 929569/(2N
17)

10: (234350250 − 378453345)10(−134) = −28820619/(2N
19)

11: (9675514731 − 4127250206)10(−148) = 1109652905/(2N
21 )
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Here is the series with the correction terms, along with the table of Genocchi

numbers.
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S2: Genocchi

Genocchi

Numbers

G0 -1

G1 1

G2 -3

G3 17

G4 -155

G5 2073

G6 -38227

G7 929569

G8 -28820619

. . .

Series S3: Bernoulli

The sum of this famous series, denoted by ζ(2), was found by Euler, and since then

there’s been a tremendous amout of research related to the series [2]. Let’s do an

initial run with N = 106:

1.6449340668482264364724151666460251892189 (π2/6)
1.6449330668487264363057484999793918558846 (sum of 106 terms)

1 2 3 4

Here there are 2 obvious correction terms, easily calculated as before:

1: (4 − 3)/106 = 1/N

2: (2 − 7)/1013 = −5/(10N2) = −1/(2N
2

The sum after adding in the two correction terms is:

1.6449330668487264363057484999793918558846 (sum + two terms)

But now the process seems stuck, with nothing more to do.

Digression about other bases. So far I’ve used a power of 10 as the number of

terms, and displayed the number base 10. This works only if the correction terms

have no primes in their denominators except 2 or 5. Anything else, and the term

doesn’t have trailing zeros. But there is nothing special about base 10. In fact, base

30 is a better choice, since it includes 2, 3, and 5. Then I try 42, then 66, and several

others. Use a power of the base for the number of terms. In larger bases my Python

software displays 10–35 as “a”–“z”, 36–61 as “A”–“Z”, and then “+-*=”.
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So let’s do a base 30 calculation in this case, first without the two correction terms

already found, and then with them included. Here N = 304 = 810000.

1.jad6holt3j6pimo2nsq5lfpfhms87j4ainis6smf8tga54ccc5 (π2/6, base 30)

1.jad5holtij6pdmo2nsq5mfpfhms86rleran6p312d83ebdb7a7 (sum, no corr terms)

1.jad6holt3j6pdmo2nsq5mfpfhms86rleran6p312d83ebdb7a7 (sum, 2 corr terms)

1 2 3 4 5

Now there are 4 clear correction terms: the two obtained before and two new ones.

Getting the terms can be annoying, since one must do base 30 arithmetic.

3: 5/3013 = 5/30N3 = 1/(6N
3), since (i-d) base 30 = 5.

4: −1/3021 = −1/30N
5, since (l-m) base 30 = -1.

I’m stuck again. The next base in line to try is base 42, and amazinely it works.

The second line below calculates the sum of 423 = 74088 terms, base 42:

1.r3rAvvu4s5f7hgCglndh9Cx6zwrf3b5uEFyo2msk4Drkl8rkpE (π2/6, base 42)

1.r3rAvvu4s5f7hgCglndh9Bx6zwrgk2uDfua5uxfvllg8x3f1op (sum, 4 corr terms)

1 2 3 4 5

This gives a fifth term.

5: 1/4222 = 1/(42N
7), since (C-B) base 42 = 1.

Again it stopped in base 42, so start with base 30 again, and N = 303 terms:

1.jad6holt3j6pimo2nsq5lfpfhms87j4ainis6smf8tga54ccc5rbtnhqgbgf (base 42)

1.jad6holt3j6pimo2nsq5lfpfhms97j4ailamn9k1277c60ghbdk4tiikas4h (4 corr terms)

1 2 3 4 5 6

Now the sixth term is:

6: −1/3028 = −1/(30N
9), since (8-9) base 30 = -1.

Finally, skipping 30 and after trying 42, I try base 66, with N = 663.

1.GBl-HiWI6eQs*QuqzscRI8O*Qd6ikpRjScow7E07yQbhyhyYlHKT+*a6MWkb (base 42)

1.GBl-HiWI6eQs*QuqzscRI8O*Qd6ikpRjS7ow7E0ofnk7wyfvuxRnM*15ejCA (4 corr terms)

1 2 3 4 5 6

The seventh term is:

7: 5/6634 = 5/(66N
11), since (c-7) base 66 = 5.

I had heard of Bernoulli numbers, but I didn’t remember what they were. As with

the S2 Series, it was a very nice surprise to see my terms in the integer sequences

encyclopedia under “Bernoulli numbers”. Above, I wanted 60 base 66 digits, so I

needed at least 60 · log10 66 = 109.17 or 110 decimal digits of accuracy.
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Here is the final result, with three extra terms added (my approach wouldn’t

have been able to get the eighth term):

π2

6
�

( N
∑

k=1

1

k2

)

+
1

N
+
−1

2 N2
+

1
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1
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+
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S3: Bernoulli

Bernoulli

Numbers

B0 1

B1 -1 / 2 (or +1 / 2)

B2 1 / 6

B4 -1 / 30

B6 1 / 42

B8 -1 / 30

B10 5 / 66

B12 -691 / 2730

B14 7 / 6

B16 -3617 / 510

. . .

Python Program
# s1.py: caculate MP value of Gregory’s series

from mpmath import * # make all parts of mpmath available

mp.dps = 63 # want 60 decimal digits precision, need a few extra

def greg(n): # a function named "greg", parameter n

sum = mpf(0) # sum is a multi-precision version of 0

sign = mpf(1) # sign is also multi-precision 1

for k in range(0,n): # the range for k is 0 to n-1 inclusive

term = sign/(k*2+1) # term becomes multi-precision

sign = -sign # alternate sign

sum += term # running sum

return sum # return the sum

N = 10000000 # start of actual program

total = greg(N)*mpf(4) # get the sum and multipy by 4

print(mp.pi, "(Pi)") # print the first line of data in this article

print(total, "(Sum)") # print the second line of data in this article
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Summary. This article examines three series for π using a multi-precision package to calculate the
sums up to 150 digits. In some cases, if the number of terms summed is a power of ten, then the sum
itself displays many extra digits of π, intermingled with incorrect digits. The incorrect digits point to
correction terms which improve the accuracy of the calculation.
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