The Fingerprinted Database

Neal R. Wagner!

The University of Texas at San Antonio
Division of Mathematics, Computer Science
and Statistics
San Antonio, Texas 78285

Abstract. A fingerprinting Database Management Sys-
tem presents a unique version or view of the data to each
user. The view contains small pseudo-random modifications
to selected data items. The objective of this system is to
identify users who divulge proprietary information which
they have obtained through legitimate access. Even if the
user makes further modifications to the data before its mis-
use, a statistical procedure will identify the source of misuse
with any desired degree of certainty.

1. Introduction

This article presents an approach to data security which
identifies the source of misused or leaked data by inserting
small, user-specific modifications to the data itself. These
modification (called fingerprints) uniquely identify the par-
ticular person (called the opponent) making unauthorized use
of the data. This article proposes distribution of a distinct
fingerprinted view of the database to each user.

There have been many speculative accounts of finger-
printing schemes, including material in an earlier article by
the first author [Wagn 83] and even a method described in
a popular novel [Clan 87, p. 87]. Other examples range
from the “dirty, strange” fingerprints mentioned in [DeMi 78,
p. 130} to the insertion of the encrypted company name in
software. Most such methods work either poorly or not at
all when the opponent has complete knowledge of the system
and arbitrary computing power. However, such an opponent
cannot protect himself from the statistical methods discussed
in this article, unless he can discover the true unfingerprinted
data.

The DBMS inserts fingerprints by slightly altering or
“tweaking” selected data items using a pseudo-random func-

IThis material is based in part upon work supported by the Texas
Advanced Research Program.

CH2840-7/0000/0330$01.00 © 1990 IEEE

Robert L. Fountain

330

Robert J. Hazy

AT&T Material Management Services
5 Woodhollow Road
Parsippany, New Jersey 07054

tion of the user-id together with other identifiers. Thus each
user receives a consistent view of the database, while the fin-
gerprint insertions will vary pseudo-randomly from user to
user. (See section two below.)

Many data items will not permit alterations (e.g., a char-
acter string or a key attribute), while for others the permit-
ted modification must be chosen carefully. Discussion of the
difficulties of data selection and modification appears in sec-
tions two and three.

Because the fingerprints are data modifications, the op-
ponent may try to evade identification by further modifica-
tion of the data. This tactic will not work, though. Given
a sufficient amount of misused data and a bound on the de-
gree of additional modifications, the statistical methods of
evaluation discussed below in section four will identify the
opponent with any desired degree of certainty (e.g., a 95%
confidence level). In fact, given specific sizes for the finger-
print modifications and a specific bound for the opponent’s
further modifications, section four produces a specific num-
ber of required misused data items to guarentee a desired
confidence level. Even without a bound on the oppomnent’s
modifications, the methods of section four will produce an es-
timate of such a bound. Section five below gives an extended
hypothetical example of the application of these statistical
methods.

The opponent could use especially large additional data
modifications, so that identification would require much more
misused data, but such additional tampering may render the
data useless. It further skews the data which the DBMS has
already modified within acceptable ranges.

Some users will need access to the unmodified database.
For example, a court of law deciding a criminal case should
not do so with fingerprinted data. Section six discussed dif-
ferent levels of fingerprinting, including an unfingerprinted
view. Section six also presents a method that would allow

identification of coalitions of users leaking data and would
allow more rapid statistical analysis after a leak.

The use of fingerprints does not directly prevent the mis-
use of data. This is an unavoidable condition, since we as-
sume that the opponent has legitimate access to the data.
Instead, fingerprinting acts as a deterrant to misuse, and may
alert the innocent user that he has been compromised. This
approach only guards against leaks of specific data items—
leaked values such as averages would not be as well protected
(unless the average is a derived attribute that is itself finger-
printed). To our knowledge, a system such as we describe
has not been implemented or used.

This approach to fingerprinting uses a pseudo-random
code with no explicit simple decoding algorithm. Such a code
makes sense in this setting since one would mainly encode or
fingerprint data, and would only rarely decode (i.e., identify
the opponent in the event of misuse). Fingerprint insertion
(encoding) is simple, while decoding is aided by its use of
only that small portion of the entire data set returning as
misused data.

Misuse of legitimately obtained data will remain a secu-
rity problem even if all other technical problems have been
solved. Fingerprinting seems the only solution to this final
problem. Our system will catch any opponent who misuses
a sufficient amount of data. One need not assume a consis-
tent or continued behavior by the opponent. The opponent
himself would be able to monitor his increasing exposure as
he leaks data, but he has only two choices: stop leaking data
or risk increasingly certain detection.

2. Fingerprinted Views

A view in a relational DBMS is a set of stored or derived
relations, expressed in a data definition language [Denn 86],
[Ulim 88]. Often, a view functions as a mask, presenting only
those fields relevant to a particular objective. Intuitively, a
view or an erternal schema [Lars 86] is “an abstraction of
part of the conceptual database” {Ullm 88, p. 9]. Thus a
fingerprinted view is a view with small modifications to a
subset of the data items.

Fingerprints must be consistent for a given user, even if
a given data item appears more than once or in combination
with other data items. For this reason one should fingerprint
only dependent attributes of a single relation in a normalized
relational database. The fingerprints must not interfere with
any semantics behind an attribute, e.g., if specific numeri-
cal ranges of an attribute have some semantic meaning, one
should either not fingerprint the attribute at all or else not
allow large enough modifications to move out of the logical
range.

In constructing fingerprinted views, one faces problems
similar to those in the enforcement of multilevel security
[Clay 83], [Denn 85}, [Grau 85]. A simple “front end” might
be used for fingerprinting, placed between the DBMS and

331

the users, like the trusted filters of multilevel security. This
approach leaves the front end simple enough for formal se-
curity proofs, but it is then difficult to handle selections,
projections, statistical queries, and other advanced features
of a relational database. A better approach, taken for mul-
tilevel security in [Denn 86], places features such as security
enforcement (and fingerprinting) at a low level in the con-
ceptual database, just above the physical database. Such
additions to a DBMS should still have a tractable model
and formal correctness proof.

The view provided to each user must appear complete
as well as consistent. Completeness may be accomplished in
two ways: globally (fingerprinting the entire database, sepa-
rately for each user) and by request (applying fingerprints as
data values are requested). Global completeness requires an
unacceptable storage overhead even for a small database. In-
stead, implanting fingerprints by request produces a virtual
conceptual database, with fingerprints specific for the user,
applied as the data values are needed. This eliminates the
storage requirements, but additional CPU processing costs
remain. See Figure 1 for a simple example.

This article concentrates on binary fingerprints placed on
numeric attributes (and attributes like dates). The finger-
printed data items will have two possible values, modified
and actual, one of which is chosen for a user’s fingerprinted
view. Our approach assumes that each fingerprinted at-
tribute will have a delta value D (positive or negative) in
the database description. Fach individual user will consis-
tently find either the actual value or the actual value plus D
in his fingerprinted view. If the opponent compromises sev-
eral users and obtains two versions of a fingerprinted datum,
he still does not know which is the true value.

Our method of fingerprint insertion using a fixed positive
or negative delta has the disadvantage that if a sum or aver-
age of values is computed, the fingerprints accumulate, since
they have the same sign. As an alternative, one could use a
fixed positive delta which is either added or subtracted for
the fingerprint. Though the opponent may gain slight ad-
vantage in determining the actual data, averages and sums
are close to the true values.

Any method that allows choosing one of two (or more)
alternative data values would work in our approach. We
use a delta value to insert binary fingerprints on numeric at-
tributes for simplicity—particularly in the database descrip-
tion, where only the extra delta value needs to be decided
upon and stored. The main criterion is that the opponent
should have no way to favor one data value over another. In
an extreme example, the database could explicitly store two
possibilities for each attribute value. This approach might
involve too much work in deciding on two possible values,
and it would increase storage requirements.

The choice of which version of the data item to issue
is a function of the user-id, the relation name, the attribute
name, and the key value. (The fingerprint might also depend
on the group-id, and the user level as discussed in section six.)

I{’Sgwl User 1 User 2 I{;ng
(finger- Vlewl (Vlew]) (finger-
printed) (normal) norma printed)
Salary Salary Salary Salary
$34050 $34050 $34050 $34070
Date Date Price Price
10/27/88 10/25/88 $12.40 $12.25
Virtual Conceptual Virtual Conceptual
H Database : Conceptual Databz?se
(fingerprinted Database (fingerprinted
for User 1) "—’ > for User 2)
Salary $34050 : Salary $34050 20 Salary $34070
! Date | 10/27/88 i Date 10/25/88 2 Date 10/25/88
Price $12.25 | Price $12.40 -0.15 Price $12.25
Physical
Database
3405000
274,1988
1240

Figure 1. Fingerprinted Views with Virtual Conceptual Databases.

The database will employ a pseudo-random hash function,
which uses the concatenation of these items as a seed to
produce a binary result, choosing either the actual or the
modified data item.

3. Details of Implementation

The feasibility of fingerprint implementation is not obvi-
ous. It may be difficult to find dependent attributes whose
values can be modified at all. Even for simple modifiable nu-
meric fields there are difficulties in setting a tolerance (the
delta value mentioned in section two). We admit that fin-
gerprints do distort the data—there is obviously some effect.
However, small changes can often be made with minimal
problems, as illustrated in this section and in section five.

As an example, consider a medical database. Medical
records have often been revealed inappropriately, though ac-
cess to these records is essential during an emergency. A
medical record has many data items that could be finger-
printed by a medically knowledgeable DBMS administrator.
For instance, the exact date for a Rubella vaccination is not

332

important to a doctor, and could be modified in our system
if one is willing to regard a date as a numeric attribute. The
systolic portion of blood pressure varies several points even
at rest. A change of a few points to a standardized test score
should not alter an overall evaluation. Users should be told
that fingerprints are present so that they could expect slight
variations from correct values.

Consider as a second example Scholastic Aptitude Test
(SAT) scores for college entrance in the United States. Some
parents and students would react very negatively to the low-
ering of an SAT score by even a few points. They might
feel that those few points could make a crucial difference.
(Of course they would also object to raising someone else’s
score.) This example illustrates the tradeoff between secu-
rity and accuracy. One needs to convince users to tolerate
fingerprint changes for increased security.

It may be difficult to find suitable properties to alter. For
example in the database of a U. S. Federal Reserve Bank,
the data consists of interest rates, par amounts, id numbers,
bank numbers, account balances, number of treasury tenders

purchased, and so forth. There does not appear to be any
property here that can be fingerprinted. Banks are poor
candidates for fingerprinting partly because their data is not
secret—banks require authentication. Still, account balances
and various dates could be modified if users understood that
fingerprints were present.

The date fields mentioned above are often good candi-
dates for modification. But here one should not necessarily
use a simple delta value of a fixed number of days. One
might make the date of a loan a Sunday rather than a week-
day. Thus modifications to dates might take weekdays, and
perhaps holidays and other important dates into account.
This could be done by software with a built-in calendar, re-
placing a fixed delta value by an algorithm.

Other fields also require special considerations regarding
delta values. An arbitrary delta value applied to a salary
field might change it from $36,000 to $36,001.13, making the
fingerprint obvious. Fields such as salaries or loan amounts
would need a “round” delta value. In general the semantics
behind an attribute can make problems for our methods.

The fixed delta value should be stored in the database de-
scription. The modifications needed to the DBMS software
to handle fingerprinting would be straightforward: low level
DBMS routines retrieving data from the physical database
for the conceptual database would apply the fingerprints.
For each access of a fingerprinted data item, a binary-valued
hash function needs to be computed, as mentioned in section
two:

IF hash(Userld, RelationName, AttributeName,
KeyValue) = 1 THEN

return(AttributeValue + AttributeDelta)
ELSE return(AttributeValue)

This sounds like quite a bit of computation, but such a
hash function could be computed quickly with special hard-
ware, using for example a Data Encryption Standard (DES)
chip and cipher feedback mode [Denn 82, p. 147]. (Roughly
the same amount of computation is involved in storing a
database in encrypted or compressed form, and this is now
done frequently.) The specific hash function used would need
to be kept secret—for example based on a secret DES key.
If one is taking an average over a fingerprinted attribute,
then each separate value participating in the average would
get an individual fingerprint, and the average would thus be
consistent with other similar data for a given user. (Because
of this consistency, our fingerprints do not give any extra se-
curity against statistical database attacks [Denn 82], except
that any deduced value might be a delta away from the true
value.)

4. Statistical Analysis of Misused Data

This section uses the binary fingerprints discussed ear-
lier and a specific statistical algorithm for processing any

333

returned data. There are other approaches, but this one
works well. The algorithm has the advantage that any bias
of the opponent’s modifications will cancel out during the
calculations. Readers not interested in this statistical analy-
sis should skim through the discussion to the algorithm and
examples at the end of the section.

In order to use the proposed statistical analysis, as-
sumptions must be made regarding the opponent’s behav-
jor. These assumptions will be described, and are summa-
rized below in equation (2). The analysis of the data then
takes the form of a widely used statistical procedure, the
two-sample test for equality of means. (Not all details of the
theory are presented here—the interested reader can write
to the second author for such details.)

In all statistical hypothesis tests there are two types of
error possible. In the present context, the first type of error
would conclude that a particular user is the opponent, when
he is not. The second would conclude that a user is not the
opponent, when he actually is. The probabilities (denoted
below by a and B, respectively) of committing the two types
of errors can be made as close to 0 as desired, although they
can never be completely eliminated.

Suppose we have N real data values V1,V3,..., Vi and
m users. Each value V; must have an associated delta value
D; > 0 with the property that any number in the closed
interval [V; — D;,V; + D] is acceptable for use by all users.

For 50 percent of the data values, users are provided with
either V; or V; + Dj;, and in the remaining cases, users get
either V; or V; — D;. All choices are done in pseudo-random
fashion as described earlier. With this strategy, any coali-
tion of users has at most two versions of a data value to work
with—one correct and one incorrect, and they do not know
which is which. For the analysis here, one needs two accept-
able values for each datum, and it does not matter whether
one is “correct” and the other is“incorrect.” The version of
the jth datum sent to User 7 is denoted V;;.

Now suppose the data has been leaked to the press
by the opponent without authorization, and that values
V!, V4,..., V! appear in a staff writer’s column. (Usually n

will be much smaller than N above). For each ¢, 1 < < m,
test the hypothesis that User 7 is the source of the leaked
values. For this purpose examine the numbers

_YizW

yi=—5—2, 1<j<n, fixedi.
2

(1)
The y;; are the standardized differences between the returned
values and the values given to User i.

For fixed i, consider means over two disjoint subsets of
the y;;. Let Si; be the set of indices j for which Vij is the
higher of the two versions of V; sent to different users, and
Si; the set of indices for which V;; is the lower of the two
versions. Let n;; and n;; be the cardinalities of sets S;; and
Siz2, respectively. Let g and §i; be the averages of the y;;

over S;; and S5, and let d; = §;, — Vit

Suppose that V{,Vj,...,V} are independent random
variables with V/ having mean Vj; + é; and variance 72.
Also assume that the amount of “tweaking” done by the
opponent is proportional to the amount done by the DBMS
administrator. Letting u and o2 represent the constants of
proportionality, these assumptions may be stated as
I
D}

k3

D, # and

2

The usual two-sample test for equality of means can now
be carried out. The following two hypotheses will be tested:

Ho, the null hypothesis: User i is the opponent.
H,, the alternative hypothesis: User i is not
the opponent.

The following quantity, called the test statistic, is then cal-

culated: d
2l = T : =, 3)
LY
where
1 _
sh=— - 2 (v —ga)?, for k=1,2. (4
Tik JE€Sik

According to the Central Limit Theorem for non-identically
distributed independent random variables [Brei 68], the
quantity 2} will have an approximate standard normal distri-
bution, provided that n;; and n;, are large. The null hypoth-
esis is rejected if |27| exceeds 24, the upper 100c percentage
point of the standard normal distribution. These z, values
are readily available in statistical references such as [Koop 81]
or [Owen 62]. For the reader’s reference, we include a short
list of (e, 2,) pairs: (0.1,1.282), (0.05,1.645), (0.01,2.326),
(0.005,2.576), (0.001, 3.090), (0.0005, 3.290), (0.0001, 3.720)
(0.00005, 3.890), (0.000005, 4.420).

)

The probability of rejecting Ho when Hp is actually true is
a, which can be chosen as small as desired. The probability
of accepting Ho when Hj is actually false depends upon the
true identity of the opponent. Let § represent the probability
of accepting User i as the opponent when User & (k #1)is
the true opponent. It can be shown that

. n
ﬁ=o[za—%]. (5)
where ®(-) is the cumulative standard normal distribution
function. Now the sample size required to achieve a specific
a and B is

n = 40%(24 + 25)%.

(6)
The 24 and z5 are read from a table of the standard normal
distribution, as mentioned above. The variance, 0%, may
be estimated using prior information, or after the data have
been collected, it may be estimated by a weighted average of

334

the sample variances (4) as follows:

o2 = (i1 = D)sh + (nip — 1)sh
ng +np—2 '

™

Figure 2 below summarizes the relations between a,
and n, using normal distributions centered at 0 for the null
hypothesis and centered at 35 for the alternative hypothesis.
Notice that as the sample size n increases, the curve centered
at ¥ moves to the right, decreasing g rapidly.

Figure 3 on the next page summarizes the work so far as
an explicit algorithm.

EXAMPLE 1. Suppose that a and B are required to
be 0.01 each. Assume that o2 = 1, that is, the oppo-
nent “tweaks” the values by about the same amount as
the DBMS administrator. Then n = 4(z0.01 + 20.01)*
4(2.326+2.326)* = 86.56. So roughly 90 values would have to
be observed. The test statistic z?, as described by equations

(3) and (4) above, would then be calculated. If 2z} exceeded
2001 = 2.326, User i would be declared innocent. This test
would be carried out for each 7, 1 < i < m. Note that it
is possible for several users to be accepted as the opponent.
This effect can be minimized by choosing a small 4 and in-
creasing the sample size as required. If @ and 3 were set equal
to 0.0001, then n = 4(20.0001 + Z0.0001)> = 4(3.720 +3.720)? =
222. 1f the opponent were to “tweak” values by roughly
twice the amount of the administrator, then one would have
0% = 4, and the values of n above would need to be nearly
350 and nearly 900 for the two examples above.

EXAMPLE 2. In a previous article [Wagn 83] the first
author presented a simulation with n = 200 returned values,
and with 40 separate users. Here the ratio of the opponent’s
changes to the fingerprints was o = 1.233. If processing one
user, the @ and § may each be taken to be 0.002 with this
number of returned items. Thus for any single user, we have
probabilities of 99.8% of correctly identifying that user as
innocent or as the opponent. After processing all 40 users,
a conservative estimate of the probability of identifying the
opponent is 1 — 408, or about 92%.

Figure 2. Nlustration of the Hypothesis Test.
(“Bactrian” curves.)

ALGORITHM. Test the hypothesis that User i is the
opponent.

1. Choose an acceptable probability a: that the algo-
rithm will fail to identify User ¢ as the opponent,
when he is and an acceptable probability 8: that
the algorithm will identity User i as the opponent,
when he is not. Use equation (6) to calculate the
necessary sample size, n.

2. Use the returned data {Vj'}, the original data sent
out {V;;} and the delta values {D;}, each for 1 <
j < n, to calculate

o y;;: standardized differences, using equation

(1),
e §; and ip: averages of y;; over Si and Siz.
o di: i — Fia-

e s? and s%: the sample variance of y;; over Si
and Sj,, using equation (4).

o z!: the test statistic, using equation (3).

" 3. If 2} > z,, then the algorithm concludes that User ¢
is not the opponent. Probability of error is < a.

4. If 2} < zq, then the algorithm concludes that User i
is the opponent. Probability of error is < f.

5. At this point, 0> may be estimated by equation (7).
If this estimate exceeds the original estimate of o2,
the necessary sample size should be recalculated us-
ing (6). (This means either waiting for more data
values to arrive or accepting a higher value of 3 than
was chosen in step 1.)

Figure 3. Fingerprint Identification.

From the above discussion it should be clear that the
opponent’s best strategies are to leak very little data and
to change it as much as possible. As the amount of misused
data increases, chances of detection increase in proportion to
the percentage of fingerprinted data in the data set. Secu-
rity personnel may select the level of confidence they desire
in analysis and proceed. In any event, the opponent’s ef-
fectiveness in evasion coincides to his ineffectiveness as an
opponent.

5. Extended Example

For a more realistic and lengthy example, consider the
counseling department of a large corporation, which keeps a
database of employee’s scores on the Minnesota Multiphasic
Personality Inventory (MMPI) [Lach 74]. Suppose that the
scores are meant to be confidential, but that someone is ob-
taining the scores in some unauthorized way and using this
information in a harmful manner. For example, a manager
bases his decision not to promote a certain employee on the

335

fact that the employee had an undesirable personality pro-
file. After this is suspected of occurring several times, the
DBMS administrator decides to try to do something about
it.

The administrator consults with a professional psycholo-
gist to decide on a delta value for the fingerprints on scores.
On each part of the test, the normal range is a region 15
points wide, with the adjacent higher and lower regions being
10 points wide. Evaluations are based in part on the overall
shape of the plot of the scores on the thirteen parts of the
test; specifically, combinations of “peaks” in the graph at
certain locations are important. The administrator and con-
sultant decide that score values altered by +2 points should
not result in any significant variation in the overall evalua-
tion.

There are 50 different professionals who have legitimate
access to the data, and access is controlled tightly, so that
it is felt that either the opponent is himself a user, or has
compromised one of the 50 legitimate users. A secretary
agrees to copy down as many leaked test scores as possible,
without the manager’s knowledge or permission. It appears
at first glance that the opponent has simply been rounding all
scores to the nearest 5 points. The ratio of the variance of the
opponent’s tweaking to the variance in the fingerprints is 2 to
4,50 0% i3 0.5. (The variance is the average squared deviation
from the true value, and rounding to the nearest five points
results in deviations of 0, 1, 2, —2, and —1.) Values of a and
8 equal to 0.0001 are chosen so that the sample size n needed
to achieve this, given by equation (6) is n = 40%(zq + 25)* =
4(0.5)(3.72 + 3.72)? = 111. The strategy is to wait for 111
returned score values, or approximately 9 complete MMPI
scores, and then do the statistical processing. At that point
equation (7) will be used to re-estimate o2.

However, after providing 6 sets of scores, or 78 values, to
the DBMS administrator, the secretary quits due to illness.
Now the administrator decides to use the available values for
the statistical analysis, even though there are not as many
as originally planned. With this value of n, values « and
B = 0.001 can still be achieved.

For each individual test, we have a 0.001 chance of falsely
accusing a user or of missing the true opponent. After check-
ing each of the 50 users, we have a probability of at least
1—50(0.001) = 95% of identifying the correct user, and only
that user, as the opponent. Then the hope is that one can

use other means to prove that this user is indeed the source
of the leak.

6. Refinements

In the case of a large number of users, identifying the op-
ponent could be a lengthy computation. The method in sec-
tion four has time complexity O(nm), where n is the number
of returned fingerprinted data items and m is the number of
users. One could introduce a group-id in addition to the user-
id. (This group-id might simply.identify the organization of

the user.) Based on a binary pseudo-random hashed value of
the relation name, attribute name, key value, and group-id,
one decides whether or not to insert individual fingerprints
or group finger prints. Thus half of the data items receive
a group fingerprint, identical for every user in the group.
Identification of the opponent proceeds in two stages, first
identifying the group and second identifying the individual
within that group. The time complexity of the two-stage
process is O(n/m) with the same implied constant. How-
ever, one now needs approximately twice as many returned
fingerprinted items for the same degree of confidence in the
identification.

An additional advantage of group-ids is that a coalition
of users from the same group would not be able to notice
approximately half of the fingerprints. In this way, one would
be able to identify the origin group of a security breach, and
know which organization has been compromised.

As mentioned in section three, it will often be necessary
for some agencies to receive a view with no fingerprints. One
could introduce a user level number. The database descrip-
tion would include extra information indicating which items
to fingerprint and giving the specific delta value to use for
each level number. Level 0 would imply “no fingerprints.”
Progressive levels would have sloppier fingerprints. In the
simplest case, one could have two levels: one with, and one
without fingerprints.

7. Conclusions

A fingerprinted database will not directly prevent misuse
of data, but will allow detection of the source of misused
data and will hence act as a deterrent. In the event of a data
leak from a legitimate user, a statistical analysis will identify
the user, while routine fingerprint insertion can be carried
out during data accesses. Though fingerprinting introduces
difficulties in protecting some types of data, in general it
functions to reduce data leaks since it behooves the opponent
to reduce the amount of data that he leaks. Continued leaks
produce a cumulative trail which will eventually reveal the
source of insecurity.

Acknowledgement

Elaine DeBrine, a clinical psychologist, gave technical as-
sistance for the example in section five.

References

[Brei 68] L. Breiman, Probability, Addision-Wesley, 1968.

[Clan 87] T. Clancy, Patriot Games, Berkley Publishing
Corporation, 1987 (paperback edition, 1988).

[Clay 83] B. G. Claybrook, “Using views in a multilevel
secure database management system,” Proceed-

336

[DeM; 78]
[Denn 82]

[Denn 85]

[Denn 86]

[Grau 85]

[Koop 81]

[Lach 74}

[Lars 86]

[Owen 62

[Ullm 88]

[Wagn 83

ings of the 1983 Symposium on Security and
Privacy, IEEE Computer Society, 1983, pp. 4-
17.

R. A. DeMillo, et al., Foundations of Secure
Computation, Academic Press, 1978.

D. E. Denning, Cryptography and Data Secu-
rity, Addison-Wesley Pub. Co., 1982.

D. E. Denning, et al., “Commutative filters for
reducing inference threats in multilevel data-
base systems,” Proceedings of the 1985 Sympo-
stum on Security and Privacy, IEEE Computer
Society, 1985, pp. 134-146.

D. E. Denning, et al., “Views for Multilevel
Database Security,” Proceedings of the 1986
Symposium on Security and Privacy, IEEE
Computer Society, 1986, pp. 156-172.

R. D. Graubart, and K. J. Duffy, “Design over-
view for retrofitting integrity-lock architecture
onto a commercial DBMS,” Proceedings of
the 1985 Symposium on Security and Privacy,
IEEE Computer Society, 1985, pp. 147-159.

L. H. Koopmans, An Introduction to Contem-
porary Statistics, Duxbury Press, 1981.

D. Lachar, The MMPI: Clinical Assessment and
Automated Interpretation, Western Psychologi-
cal Services, 1974.

J. A. Larson, Database Management, IEEE
Computer Society, 1986.

D. B. Owen, Handbook of Statistical Tables,
Addison-Wesley, 1962.

J. D. Ullman, Principles of Database and
Knowledge-Base Systems, Vol. I, Computer Sci-
ence Press, 1988.

N. R. Wagner, “Fingerprinting,” Proceedings of
the 1983 Symposium on Security and Privacy,
IEEE Computer Society, 1983, pp. 18-22.

