CAPTCHAS and Information Hiding

Neal R. Wagner*

The University of Texas at San Antonio
Department of Computer Science
San Antonio, Texas 78249 USA
wagner @s. ut sa. edu

Abstract. The goal of steganography is to hide
information from humans that is accessible to ma-
chines. The so-called CAPTCHAS have the oppo-
site goal: hide information from machines that
is accessible to humans. This viewpoint sug-
gests non-traditional applications, including in-
structions, for example online or in a battlefield,
that a software agent will not be able to decode
and may not even notice, but that a human or
agent directly under human control will discover.
Current proposals for CAPTCHAS suffer from the
increasing ability of machines to discover the hid-
den information. The response of increasing the
complexity of the CAPTCHAS makes them harder
for humans to decode, negating their usefulness.
This article presents three new approaches to the
design of CAPTCHAS that may enlarge the gap be-
tween machine and human abilities.

1. Introduction and M otivation.

The viewpoint of this article is the idea of hid-
ing information from software agents in such a
way that a human will discover the information.
This is the opposite of normal steganography, but
it should have many useful applications. In fact,
modern Internet providers and others often want

*Thanks to Wayne Wagner for suggesting the first ap-
proach, to Bethany Callanan for drawing pictures for the
third approach, and to John Wagner, lan Callanan, Hugh
Maynard, Konrad Hein, and Shouhuai Xu for discussions.

to verify that they are dealing with a human be-
ing, rather than with a software agent. For ex-
ample, services such as email or e-shopping are
designed for humans but can be abused by auto-
mated software. Other automated software may
search the entire web for information. To circum-
vent the automation and make sure one is deal-
ing with a human, special automated tests are now
popular—tests easy for a human to pass but hard
for a machine. Manuel Blum and other early re-
searchers in this area gave these tests the name
CAPTCHA (see [Ahn2003]). Such software could
also be useful in situations where one wants to
signal to an online human, sending information
that software agents will miss. Ideally, as with hu-
mans looking at steganography, the software will
not even be aware of the hidden information.

A good CAPTCHA should be public, meaning
that the complete code and all other data needed
by the program are publicly available. Traditional
CAPTCHAS focus on the need for a test, so they
should then be able to generate arbitrarily many
such tests. The tests are generated and evaluated
automatically by computer, but it must require
help from a human to pass a test. From the in-
formation hiding viewpoint, the CAPTCHA might
just keep data intended for humans secret from
software.

The most common type of CAPTCHA presents
words in a distorted form, perhaps embedded in

a background or written along with other words
to make machine recognition harder, and asks
the user to type several of the words. There are
lots of variations, but that is the basic system.
Researchers are developing software to identify
these words, so the process is a continuing game
that will surely end with machines better than hu-
mans at deciphering the words.

Different systems are needed, ones that will
better utilize human pattern recognition abilities.
The next section describes a simplified version of
word recognition, using only five different pos-
sible shapes to identify, but burying the shape in
as much random noise as possible. The two sec-
tions after that present systems based on images
with errors or flaws in them. A human is asked
to identify the errors. The first type of error is a
distortion of a picture, while the second type of
error consists of objects in an image that “don’t
belong” there.

Garfinkel [Gar2003] has described another as-
pect to the whole area of recognizing humans: un-
intended consequences of pursuing this research.
Already it is sometimes annoying to have to take
a test before proceeding with some activity, but as
the programs get better with these tests, the tests
will have to get harder and the whole process will
take up more time. It is also possible to coerce
(human) users into solving such tests or even em-
ploying a third world “sweatshop” of CAPTCHA
solvers. These are serious issues, but the author
hopes that the tests in this article will be easier to
use and harder to break than current ones.

It would be relatively easy to create a sin-
gle picture or message that will alert humans
with special information, information not notice-
able to software. From the information hid-
ing point of view however, what is needed is a
system that would be repeatedly used for such
messages. One must assume that software pro-
grammers know the specifications of the system.
Thus the full power and properties of a CAPTCHA
would needed in this case.

0 Types: Circle, Square, Plus, Lines, Trian-
gle.

[0 Thickness of lines: From 4 to 12 pixels.

00 Size: Random from about a sixth of the
field to most of it.

[0 Location: Also random in the field.

[0 Distortions: Shapes distorted in both di-
rections using sin curves with random
start, period, and amplitude.

[0 Randomization of Pixels: Background
pixels set randomly to black or white,
while pixels in the lines are reversed ac-
cording to the following table:

| Percent Pixels Randomly Reversed |

Line Difficulty
Thickness || Easy | Medium | Hard
4 || 20% 26% 32%
6 || 22% 28% 34%
8 | 24% 30% 36%
10 || 26% 32% 38%
12 || 28% 34% 40%

Table 1. Parameters for Shapes.

2. Five Random Shapes.

This CAPTCHA is inspired by the five symbols
on cards that have long been used to test for abil-
ity with extrasensory perception (ESP): a circle, a
square, a plus, three wavy lines, and a star. For the
test, | turned the three wavy lines into three ver-
tical lines, and turned the (five-pointed) star into
a triangle with a vertical left side. Table 1 gives
parameters for the shapes.

Thus the software draws a shape in undis-
torted form with line thickness from 4 to 12 pix-
els. Then the shape is distorted both vertically
and horizontally using random sin curves. All
white background pixels are changed randomly to
black with probability 0.5. Finally, the pixels in
the lines of the shape itself are changed to white
with probabilities given in the table, and the shape

2 P -

Figure 1. Square Shape (dark).

drawing is black/white reversed with probability
0.5. In particular, for a shape with line thickness
12, and using the “hard” mode, the drawing itself
is 40/60 white/black (or vice versa).

Right now the orientation of the shapes is not
randomized, that is, there is only one orientation.
It would also be possible to insert artifacts into
the field, particularly additional portions of lines
to confuse software analysis. Unlike many other
CAPTCHAS, this one in its “hard” setting is right at
the edge of human ability, so that any such addi-
tions would be equally confusing to humans, and
one would need to decrease the numbers in Table
1 for humans to guess these shapes.

Software filtering techniques could try to find
areas of the pictures with statistically significant
variations of pixels from the average. Whether
such software could actually guess the shape with
reasonable accuracy in not known to me.

Figures 1 and 2 show pictures of two shapes as
displayed in the “hard” setting of the CAPTCHA.
I personally miss up to 5% of the shapes in this
“hard” setting, although | can guess all shapes
correctly in the other settings. See Section 5 for

access to Java software to try out this and the
other CAPTCHAS.

3. Distorted Pictures.

This and the next section treat pictures with
errors or mistakes in them. To pass the test a hu-
man must find these errors. The approach in this
section presents a picture with a region of distor-
tion in it. The human user is supposed to click the
mouse at the center of the distortion; he passes
the test if he is fairly close to the center, perhaps
in several successive pictures.

The specific approach here inserts a “fisheye”
into a picture with enough regularity so that a hu-
man can find the region of distortion. For this
application, a fisheye is a circular distortion that
expands a picture at the center, contracts toward
the edges, and smoothes out at the radius to end
up the same as the original picture, without any
sharp “kink” at that radius. The particular fisheye
used here appears at a random location (though
not too close to the boundary) and with a random
radius (though not too small). The expansion and
contraction from the center to the edge of the cir-
cle is given by the inverse of the equation:

RN e "
pElE pEEH
FEER Tl
HEB] go ¥
Ed ;iﬁ
1488 =
4 g
[]

™ 5
, [Hp
| -‘aﬁ‘t '.':'-'-'r.
= :. i '.-‘_.- i=1
e Wik N
0 g

'IEEHF
RAEN
EEEN
ARER
L]
LT
EEaN
LU
i

Figure 3. Fisheye Picture.

3, 3, 1
g(s) = 25 +28 +4s, 0<s<1.
For this equation, | needed ¢(0) = 0, g(1) = 1,
¢'(1) = 1, and ¢'(0) well below 1; in this case
| chose the above simple function with ¢’(0) =
1/4.

Figure 3 contains a sample picture with such
a fisheye, and Section 5 discusses a prototype im-
plementation. In an actual system, one would
want various additional distortions and random-
izations, including cropping and distorting the
original image, use of a random-shaped elliptical
fisheye, and a final randomization of the resulting
pixels.

4. What’s Wrong With ThisPicture?

A common puzzle for children gives them a
confusing picture with a number of items that

® m@\}&\

by

Figure 4. Mother Hubbard

“don’t belong” in the picture. A picture of a fish-
bowl may have a lit candle in it, or a bedroom
might have a fish on the wall. Identifying such
“mistakes” is subjective and even dependent on
cultural assumptions—hence potentially hard for
machines to analyze and (if carefully constructed)
easy of humans to spot. The underlying mo-
tivational idea is illustrated by Figure 4, which
presents a common form of puzzle for children,
asking the child to identify the “errors” in the pic-
ture. In this picture, some of the errors are obvi-
ous, but other less so; thus a CAPTCHA based on
this idea should have unequivocal errors.

The particular system here starts with one of
a number of generic background pictures, into
which many objects would naturally fit. Pictures
of quite a few of these objects are inserted, along
with perhaps 3-5 objects that unquestionably do
not belong in such a picture. More specifically,
the CAPTCHA pictured in Figure 4 starts with a
spider web, and adds various pictures of bugs.
Then several other pictures of objects are added

that would be insane to find in a spider web. The
user is asked to click the mouse at the rough cen-
ter of any object not belonging. Figure 4 is a
portion of a picture with 15 small additions al-
together, and 5 that do not belong—here only
the goldfish and coffee mug are wrong. Ran-
dom software-generated clicks on objects would
only get the correct 5 one time out of C'(15,5) =
5%, = 2730, that is, with probability 0.000366.

This system is quick and easy to use. It is also
linguistically neutral, though it might be cultur-
ally dependent.

5. Prototype | mplementations.

The author has prototype implementations of
the three CAPTCHAS in the previous sections at:

http://ww. cs. ut sa. edu/ “wagner/ capt cha/

These are just experimental implementations
using Java applets. They are given to present the
flavor of each of the approaches, but are not a final

[Gar2003]

" polished version. Each of these systems would be

fairly easy for a reader to implement by hand.
The CAPTCHA consisting of 5 shapes in ran-

: dom noise is the closest to a complete system as

presented. It is also the easiest to implement.

The second approach using a fisheye distor-
tion needs the most work beyond what is pre-
sented online. Section 4 discussed some of the
refinements that would be needed.

The third approach with errors in a picture
consists at present of a single background picture
(a spider web), and a limited collection of fore-
ground objects (bugs, and other completely inap-
propriate objects). Even though one assumes that
the complete database of images is public, it is
still necessary to have a number of background
pictures, and a large number of possible fore-
ground objects. Of course different objects would
be appropriate for different backgrounds. Each
background should be clipped from a larger back-
ground and then distorted. Similarly the fore-
ground objects need to be distorted and randomly
rotated, as well as randomly placed as shown in
the example applet. It was always clear that all
the images here should be simple black and white
line drawings, with thick lines. The author had
such trouble finding appropriate drawings, that he
finally commissioned his 12-year-old daughter to
produce some, and that is what is shown in the
applet.

References.

[Ahn2003] L. von Ahn, M. Blum, and J. Lang-

ford. “Telling Humans and Computers
Apart (Automatically) or How Lazy
Cryptographers do Al,” Comm. ACM
(to appear).

S. Garfinkel, “Excuse Me, Are You
Human?” Technology Review (June.
2003), p. 28.

