
Appears in RSA Laboratories' CryptoBytes, Vol. 2, No. 1, Spring 1996.

Message Authentication using Hash Functions| The

HMAC Construction

Mihir Bellare
�

Ran Canetti
y

Hugo Krawczyk
z

There has recently been a lot of interest in the
subject of authenticating information using cryp-
tographic hash functions like MD5 and SHA, par-
ticularly for Internet security protocols. We report
on our HMAC construction [1] which seems to be
gaining acceptance as a solution.

Introduction

Two parties communicating across an insecure
channel need a method by which any attempt to
modify the information sent by one to the other, or
fake its origin, is detected. Most commonly such
a mechanism is based on a shared key between
the parties, and in this setting is usually called a
MAC, or Message Authentication Code. (Other
terms include Integrity Check Value or Crypto-
graphic Checksum). The sender appends to the
data D an authentication tag computed as a func-
tion of the data and the shared key. At reception,
the receiver recomputes the authentication tag on
the received message using the shared key, and ac-
cepts the data as valid only if this value matches
the tag attached to the received message.

The most common approach is to construct MACs
from block ciphers like DES. Of such constructions

�Department of Computer Science & Engineering, Mail

Code 0114, University of California at San Diego, 9500

Gilman Drive, La Jolla, CA 92093. Email: mihir@cs.ucsd.

edu. http://www-cse.ucsd.edu/users/mihir.
y Laboratory for Computer Science, 545 Technology

Square, Cambridge, MA 02139. Email: canetti@theory.

lcs.mit.edu. Supported by a post-doctoral grant from the

Rothschild Foundation.
zIBM T.J. Watson Research Center, PO Box 704, York-

town Heights, New York 10598. Email: hugo@watson.ibm.

com.

the most popular is the CBC MAC. (Its security is
analyzed in [4, 12]). More recently, however, people
have suggested that MACs might be constructed
from cryptographic hash functions like MD5 and
SHA. There are several good reasons to attempt
this: In software these hash functions are signi�-
cantly faster than DES; library code is widely and
freely available; and there are no export restrictions
on hash functions.

Thus people seem agreed that hash function based
constructions of MACs are worth having. The more
di�cult question is how best to do it. Hash func-
tions were not originally designed for message au-
thentication. (One of many di�culties is that they
are not even keyed primitives, i.e., do not accommo-
date naturally the notion of a secret key). Several
constructions were proposed prior to HMAC, but
they lacked a convincing security analysis.

The HMAC construction is intended to �ll this gap.
It has a performance which is essentially that of the
underlying hash function. It uses the hash func-
tion in a black box way so that it can be imple-
mented with available code, and also replacement
of the hash function is easy should need of such a
replacement arise due to security or performance
reasons. Its main advantage, however, is that it can
be proven secure provided the underlying hash func-
tion has some reasonable cryptographic strengths.
The security features can be summarized like this: if
HMAC fails to be a secure MAC, it means there are
su�cient weaknesses in the underlying hash func-
tion that it needs to be dropped not only from this
particular usage but also from a wide range of other
popular usages to which it is now subject.

1



Several articles in the literature survey existing con-
structions, their properties, and some of their weak-
nesses, so we will not try to do this again here. In
particular the reader is referred to Tsudik [17], who
provides one of the earliest works on the subject;
Kaliski and Robshaw who, in the �rst CryptoBytes
[8], compare various possible constructions; updates
appearing in succeeding issues of CryptoBytes; and
Preneel and van Oorschot [12, 13], who present a de-
tailed description of the e�ect of birthday attacks on
\iterated constructions" and also a new construc-
tion called MDx-MAC.

We now move on to discuss the HMAC construc-
tion, status, and rationale. For a complete descrip-
tion, implementation guidelines, and detailed anal-
ysis we refer the reader to [1, 9].

HMAC

Let H be the hash function. For simplicity of de-
scription we may assume H to be MD5 or SHA-1;
however the construction and analysis can be ap-
plied to other functions as well (see below). H

takes inputs of any length and produces l-bit out-
put (l = 128 for MD5 and l = 160 for SHA-1). Let
Text denote the data to which the MAC function is
to be applied and let K be the message authentica-
tion secret key shared by the two parties. (It should
not be larger than 64 bytes, the size of a hashing
block, and, if shorter, zeros are appended to bring
its length to exactly 64 bytes.) We further de�ne
two �xed and di�erent 64 byte strings ipad and opad

as follows (the \i" and \o" are mnemonics for inner
and outer):

ipad = the byte 0x36 repeated 64 times

opad = the byte 0x5C repeated 64 times.

The function HMAC takes the key K and Text, and

produces HMACK(Text) =

H(K � opad; H(K � ipad;Text)) :

Namely,

(1) Append zeros to the end of K to create a 64
byte string

(2) XOR (bitwise exclusive-OR) the 64 byte string
computed in step (1) with ipad

(3) Append the data stream Text to the 64 byte
string resulting from step (2)

(4) Apply H to the stream generated in step (3)

(5) XOR (bitwise exclusive-OR) the 64 byte string
computed in step (1) with opad

(6) Append the H result from step (4) to the 64

byte string resulting from step (5)

(7) Apply H to the stream generated in step (6)
and output the result

The recommended length of the key is at least l bits.
A longer key does not add signi�cantly to the secu-
rity of the function, although it may be advisable if
the randomness of the key is considered weak.

HMAC optionally allows truncation of the �nal out-
put say to 80 bits.

As a result we get a simple and e�cient construc-
tion. The overall cost for authenticating a stream
Text is close to that of hashing that stream, espe-
cially as Text gets large. Furthermore, the hashing
of the padded keys can be precomputed for even
improved e�ciency.

Note HMAC uses the hash function H as a black
box. No modi�cations to the code for H are re-
quired to implement HMAC. This makes it easy
to use library code for H , and also makes it easy
to replace a particular hash function, such as MD5,
with another, such as SHA, should the need to do
this arise.

HMAC was recently chosen as the mandatory-to-
implement authentication transform for the Inter-
net security protocols being designed by the IPSEC
working group of the IETF (it replaces as a manda-
tory transform the one described in [10]). For this
purpose HMAC is described in the Internet Draft
[9], and in an upcoming RFC. Other Internet pro-
tocols are adopting HMAC as well (e.g., s-http [14],
SSL [7]).

The rationale

We now briey explain some of the rationale used
in [1] to justify the HMAC construction.

As we indicated above, hash functions were not orig-
inally designed to be used for message authentica-
tion. In particular they are not keyed primitives,
and it is not clear how best to \key" them. Thus,
one ought to be quite careful in using hash functions
to build MACs.

The standard approach to security evaluation is to
look for attacks on a candidate MAC construction.
When practical attacks can be found, their e�ect
is certainly conclusive: the construction must be
dropped. The di�culty is when attacks are not yet
found. Should one adopt the construction? Not
clear, because attacks might be found in the future.

The maxim that guided the HMAC construction
was that an absence of attacks today does not im-

2



ply security for the future. A better way must be
found to justify the security of a construction before
adopting it.

You can't make good wine from bad grapes: if no
strengths are assumed of the hash function, we can't
hope to justify any construction based on it. Ac-
cordingly it is appropriate to make some assump-
tions on the strength of the hash function.

A well justi�ed MAC construction, in our view, is
one under which the security of the MAC can be re-
lated as closely as possible to the (assumed) security
properties of the underlying hash function.

The assumptions on the security of the hash func-
tion should not be too strong, since after all not
enough con�dence has been gathered in current can-
didates (like MD5 or SHA). In fact, the weaker the
assumed security properties of the hash function,
the stronger the resultant MAC construction is.

We make assumptions that reect the more stan-
dard existing usages of the hash function. The prop-
erties we require are mainly collision-freeness and
some limited \unpredictability." What is shown is
that if the hash function function has these prop-
erties the MAC is secure; the only way the MAC
could fail is if the hash function fails.

In fact the assumptions we make are in many ways
weaker than standard ones. In particular we require
only a weak form of collision-resistance. Thus it is
possible that H is broken as a hash function (for
example collisions are found) and yet HMAC based
on H survives.

A closer look

Security of the MAC means security against forgery.
The MAC is considered broken if an attacker, not
having the key K, can �nd some text Text together
with its correct MAC value HMACK(Text). The at-
tacker is assumed able to gather some number of ex-
ample pair of texts and their valid MACs by observ-
ing the tra�c between the sender and the receiver.
Indeed the adversary is even allowed a chosen mes-
sage attack under which she can inuence the choice
of messages for which the sender computes MACs.
Following [4, 3] we quantify security in terms of the
probability of successful forgery under such attacks.

The analysis of [1] applies to hash functions of the
iterated type, a class that includes MD5 and SHA,
and consists of hash functions built by iterating ap-
plications of a compression function f according to
the procedure of Merkle [11] and Damg�ard [5]. (In
this construction a l-bit initial variable IV is �xed,

and the output ofH on text x is computed by break-
ing x into 512 bit blocks and hashing in stages using
f , in a simple way that the reader can �nd described
in many places, e.g. [8].)

Roughly what [1] say is that an attacker who can
forge the HMAC function can, with the same e�ort
(time and collected information), break the under-
lying hash function in one of the following ways:

(1) The attacker �nds collisions in the hash func-
tion even when the IV is random and secret,
or

(2) The attacker is able to compute an output of
the compression function even with an IV that
is random, secret and unknown to the attacker.
(That is, the attacker is successful in forging
with respect to the application of the compres-
sion function secretly keyed and viewed as a
MAC on �xed length messages.)

The feasibility of any of these attacks would contra-
dict some of our basic assumptions about the cryp-
tographic strength of these hash functions. Suc-
cess in the �rst of the above attacks means success
in �nding collisions, the prevention of which is the
main design goal of cryptographic hash functions,
and thus can be assumed hard to do. But in fact,
even more is true: success in the �rst attack above is
even harder than �nding collisions in the hash func-
tion, because collisions when the IV is secret (as is
the case here) is far more di�cult than �nding col-
lisions in the plain (�xed IV) hash function. This
is because the former requires interaction with the
legitimate user of the function (in order to generate
pairs of input/outputs from the function), and disal-
lows the parallelism of traditional birthday attacks.
Thus, even if the hash function is not collision-free
in the traditional sense, our schemes could be se-
cure.

Some \randomness" of hash functions is assumed
in their usage for key generation and as pseudo-
random generators. (For example the designers of
SHA suggested that SHA be used for this purpose
[6].) Randomness of the function is also used as
a design methodology towards achieving collision-
resistance. The success of the second attack above
would imply that these randomness properties of
the hash functions are very poor.

The analyses in [1] used to establish the above are
exact (no asymptotics involved), consider generic

rather than particular attacks, and establish a tight

relationship between the securities.

3



Resistance to known attacks

As shown in [12, 2], birthday attacks, that are
the basis to �nding collisions in cryptographic hash
functions, can be applied to attack also keyed MAC
schemes based on iterated functions (including also
CBC-MAC, and other schemes). These attacks ap-
ply to most (or all) of the proposed hash-based
constructions of MACs. In particular, they con-
stitute the best known forgery attacks against the
HMAC construction. Consideration of these at-
tacks is important since they strongly improve on
naive exhaustive search attacks. However, their
practical relevance against these functions is negli-
gible given the typical hash lengths like 128 or 160.
Indeed, these attacks require the collection of the
MAC value (for a given key) on about 2l=2 mes-
sages (where l is the length of the hash output). For
values of l � 128 the attack becomes totally infea-
sible. In contrast to the birthday attack on key-less
hash functions, the new attacks require interaction
with the key owner to produce the MAC values on
a huge number of messages, and then allow for no
parallelization. For example, when using MD5 such
an attack would require the authentication of 264

blocks (or 273 bits) of data using the same key. On
a 1 Gbit/sec communication link, one would need
250,000 years to process all the data required by
such an attack. This is in sharp contrast to birth-
day attacks on key-less hash functions which allow
for far more e�cient and close-to-realistic attacks
[18].

References

[1] M. Bellare, R. Canetti and H. Kraw-

czyk. Keying hash functions for message
authentication. Advances in Cryptology {

Crypto 96 Proceedings, Lecture Notes in Com-
puter Science Vol. ??, N. Koblitz ed., Springer-
Verlag, 1996.

[2] M. Bellare, R. Canetti and H. Kraw-

czyk. Pseudorandom functions revisited: The
cascade construction. Manuscript, April 1996.

[3] M. Bellare, R. Gu�erin and P. Rogaway.

XOR MACs: New methods for message au-
thentication using �nite pseudorandom func-
tions. Advances in Cryptology { Crypto 95
Proceedings, Lecture Notes in Computer Sci-
ence Vol. 963, D. Coppersmith ed., Springer-
Verlag, 1995.

[4] M. Bellare, J. Kilian and P. Rogaway.

The security of cipher block chaining. Ad-

vances in Cryptology { Crypto 94 Proceedings,

Lecture Notes in Computer Science Vol. 839,
Y. Desmedt ed., Springer-Verlag, 1994.

[5] I. Damg�ard. A design principle for hash func-
tions. Advances in Cryptology { Crypto 89
Proceedings, Lecture Notes in Computer Sci-
ence Vol. 435, G. Brassard ed., Springer-
Verlag, 1989.

[6] National Institute for Standards and

Technology. Digital Signature Standard
(DSS). Federal Register, Vol. 56, No. 169, Au-
gust, 1991

[7] A.O. Freier, P. Karlton, and P.

C. Kocher. The SSL Protocol { Version 3.0.
Internet draft draft-freier-ssl-version3-01.txt,
March 1996.

[8] B. Kaliski and M. Robshaw. Message Au-
thentication with MD5. RSA Labs' Crypto-

Bytes, Vol. 1 No. 1, Spring 1995.

[9] H. Krawczyk, M. Bellare and R. Can-

etti. HMAC-MD5: Keyed-MD5 for Message
Authentication. Internet draft draft-ietf-ipsec-
hmac-md5-txt.00, March 1996.

[10] P. Metzger and W. Simpson. IP Authen-
tication using Keyed MD5", IETF Network
Working Group, RFC 1828, August 1995.

[11] R. Merkle. One way hash functions and
DES. Advances in Cryptology { Crypto 89
Proceedings, Lecture Notes in Computer Sci-
ence Vol. 435, G. Brassard ed., Springer-
Verlag, 1989. (Based on unpublished paper
from 1979 and his Ph. D thesis, Stanford,
1979).

[12] B. Preneel and P. van Oorschot. MD-x
MAC and building fast MACs from hash func-
tions. Advances in Cryptology { Crypto 95
Proceedings, Lecture Notes in Computer Sci-
ence Vol. 963, D. Coppersmith ed., Springer-
Verlag, 1995.

[13] B. Preneel and P. van Oorschot. On
the security of two MAC algorithms. Advances
in Cryptology { Eurocrypt 96 Proceedings,
Lecture Notes in Computer Science Vol. ??,
U. Maurer ed., Springer-Verlag, 1996.

[14] E. Rescorla and A. Schiffman. The
Secure HyperText Transfer Protocol. Inter-
net draft draft-ietf-wts-shttp-01.txt, Febru-
ary 1996.

4



[15] R. Rivest. The MD5 message-digest al-
gorithm. IETF Network Working Group,
RFC 1321, April 1992.

[16] FIPS 180-1. Secure Hash Standard. Fed-
eral Information Processing Standard (FIPS),
Publication 180-1, National Institute of Stan-
dards and Technology, US Department of
Commerce, Washington D.C., April 1995.

[17] G. Tsudik.Message authentication with one-
way hash functions. Proceedings of Info-

com 92.

[18] P. van Oorschot and M. Wiener. Par-
allel Collision Search with Applications to
Hash Functions and Discrete Logarithms. Pro-
ceedings of the 2nd ACM Conf. Computer
and Communications Security, Fairfax, VA,
November 1994.

5


