Recitation 9 should be submitted following directions at:
submissions with deadlines
|
Introduction. In this recitation you will work on a program that will create an internal, linked list representation of an arbitrary graph. The graph can be either directed or undirected, with vertices and edges. There can be information attached to the edges as well as to the vertices. We want to be able to carry out algorithms on these graphs.
One of the example graphs we will work with consists of the 48 US state capitals, with distances between them. Here is diagram of this graph, with the capitals (vertices) given as integers from 0 to 47. (See here for the names of capitals. The example and layout are due to Donald Knuth.)Graph construction: 48 mainland US capitals. Data from file: capsdist.txt | |||||||||
---|---|---|---|---|---|---|---|---|---|
// Graph.java: set up graphs data structure // Uses adjacency list representation import java.io.*; import java.util.Scanner; public class Graph { private int count; // number of nodes private Scanner sc; // input file name private GraphNode[] graph; // the graph private void err(int code) { System.exit(code); } public Graph(String fileName) { int num1 = 0, num2 = 0, num = 0; try { sc = new Scanner(new File(filename)); } catch (Exception exception ){err(1);} // get count = num of vertices if (sc.hasNextInt()) count = sc.nextInt(); else err(2); graph = new GraphNode[count]; for (int i = 0; i < count; i++) graph[i] = new GraphNode(); while (sc.hasNextInt()) { num1 = sc.nextInt(); if (sc.hasNextInt()) num2 = sc.nextInt(); else err(2); if (sc.hasNextInt()) num = sc.nextInt(); else err(3); // undirected, insert both ways insert(num1, num2, num); insert(num2, num1, num); } } private void insert(int num1, int num2, int dist) { // patch the new node in at the start if (graph[num1].firstEdgeNode==null){ // create new adjacency list, with // a node for num2, its only entry } else { // patch in a node for num2 at the // start of the existing adj list } } public void printGraph() { // print the data in the graph, // perhaps in the form below } public int edgeDistance(int v1, int v2) { // if (v1, v2) is an edge // return edgeDist of this edge // otherwise return -1 } public int pathLength(int[] path) { // calculate and return the length // of the path specified by the input // parameter. If the "path" includes // a non-edge return -1 } } | // GraphNode.java: node for graph's vertex // Holds vertex info, link to adj. list public class GraphNode { public EdgeNode firstEdgeNode;//adj.list // other vertex info here // probably want to use a constructor }
|
Complete Structure of the Internal Graph Representation (undirected graph, so each edge appears twice) | |
---|---|
First vertex | Second vertices of edges and distances, starting with the first vertex at the left |
0: [2,535],[1,129],[4,755] 1: [2,663],[6,541],[5,534],[4,713],[0,129] 2: [3,160],[6,441],[1,663],[0,535] 3: [6,619],[2,160] 4: [5,652],[7,476],[1,713],[0,755] 5: [6,338],[9,435],[8,488],[4,652],[1,534] 6: [10,438],[9,727],[5,338],[3,619],[2,441],[1,541] 7: [8,355],[12,585],[11,697],[4,476] 8: [9,100],[14,486],[13,536],[12,626],[7,355],[5,488] 9: [10,675],[15,455],[14,444],[8,100],[6,727],[5,435] 10: [16,624],[15,742],[9,675],[6,438] 11: [12,388],[18,504],[17,430],[7,697] 12: [13,293],[19,416],[18,337],[11,388],[8,626],[7,585] 13: [14,165],[19,204],[12,293],[8,536] 14: [15,392],[20,187],[19,343],[13,165],[9,444],[8,486] 15: [16,215],[21,404],[20,490],[14,392],[10,742],[9,455] 16: [21,435],[15,215],[10,624] 17: [18,416],[22,150],[11,430] 18: [19,340],[26,344],[22,253],[17,416],[12,337],[11,504] 19: [20,255],[23,192],[27,562],[26,453],[18,340],[14,343],[13,204],[12,416] 20: [21,244],[24,279],[23,291],[19,255],[15,490],[14,187] 21: [24,258],[20,244],[16,435],[15,404] 22: [26,392],[25,242],[18,253],[17,150] 23: [24,249],[28,190],[27,415],[20,291],[19,192] 24: [29,614],[23,249],[21,258],[20,279] 25: [26,282],[31,160],[30,205],[22,242] 26: [27,203],[32,597],[36,530],[31,255],[25,282],[22,392],[19,453],[18,344] 27: [28,145],[34,186],[33,197],[32,532],[26,203],[23,415],[19,562] 28: [29,244],[34,175],[27,145],[23,190] 29: [34,237],[28,244],[24,614] 30: [31,252],[25,205] 31: [36,434],[35,212],[30,252],[26,255],[25,160] 32: [33,302],[37,129],[36,156],[27,532],[26,597] 33: [34,160],[38,354],[37,397],[32,302],[27,197] 34: [38,425],[33,160],[29,237],[28,175],[27,186] 35: [36,200],[31,212] 36: [35,200],[32,156],[31,434],[26,530] 37: [38,103],[39,62],[33,397],[32,129] 38: [41,268],[40,127],[39,124],[37,103],[34,425],[33,354] 39: [40,108],[38,124],[37,62] 40: [41,193],[39,108],[38,127] 41: [42,153],[44,165],[43,111],[40,193],[38,268] 42: [45,106],[44,236],[41,153] 43: [44,101],[46,72],[41,111] 44: [45,68],[46,45],[43,101],[42,236],[41,165] 45: [47,139],[44,68],[42,106] 46: [44,45],[43,72] 47: [45,139] |