|
CS 3343/3341 Analysis of Algorithms Fall 2012 Recitation 9 Answers to In-Class Problems Week 9: Oct 23-25 |
Recurrences, solution by Master Method, Examples | |||||||
---|---|---|---|---|---|---|---|
Recurrence | a | b | logb(a) | nlogb(a) | f(n) | Case | Behavior |
T(n) = 3 T(n / 2) + n2 | 3 | 2 | log2(3) = 1.585 | n1.585 | n2 | 3 | Θ(n2) |
T(n) = 2 T(n / 2) + n2 | 2 | 2 | log2(2) = 1 | n1 | n2 | 3 | Θ(n2) |
T(n) = 64 T(n / 4) + √n | 64 | 4 | log4(64) = 3 | n3 | n0.5 | 1 | Θ(n3) |
T(n) = 9 T(n / 3) + n2 log(n) | 9 | 3 | log3(9) = 2 | n2 | n2 log(n) | none | Master fails |
T(n) = 32 T(n / 2) + n2 log(n) | 32 | 2 | log2(32) = 5 | n5 | n2 log(n) | 1 | Θ(n5) |
T(n) = 125 T(n / 5) + 1 | 125 | 5 | log5(125) = 3 | n3 | n0 = 1 | 1 | Θ(n3) |
T(n) = 16 T(n / 4) + n4 | 16 | 4 | log4(16) = 2 | n2 | n4 | 3 | Θ(n4) |
T(n) = 2 T(n / 4) + √n | 2 | 4 | log4(2) = 1/2 | n1/2 = √n | √n | 2 | Θ(√n log(n)) |
T(n) = 2 T(n / 4) + √n log(n) | 2 | 4 | log4(2) = 1/2 | n1/2 = √n | √n log(n) | none | Master fails |