CS 3343/3341 Analysis of Algorithms Spring 2012 |
Recursion Trees and
Cost Analysis |
T(n) = T(n/2) + c |
(n / 2i ) = 1, or taking logs log[n / 2i] = log(1), or since log(1) = 0 log(n) - log(2i ) = 0, or log(n) = i * log(2), or since log(2) = 1 i = log(n). |
T(n) = T(9n/10) + c |
[n / (10/9)i ] = 1, or taking logs log[n / (10/9)i ] = log(1), or log(n) - log[(10/9)i] = log(1), or since log(1) = 0 log(n) = i* log(10/9) = 0, or i = log(n) / log(10/9), or i = log(n) / 0.15200, or i = 6.5788 * log(n) |
T(n) = 2 T(n/2) + Θ(n) |
T(n) = T(n - 1) + T(0)+ Θ(n), and T(0) = Θ(1) |
T(n) = T(9n/10) + T(n/10)+ c n |