
CS 2733/2731, Final Exam, 5 May 2004 Page 1

CS 2733/2731, Computer Organization II
Spring Semester, 2004

Final Examination

(15)1. Consider the following MIPS code fragment:

.data
stored in A are the first 10 prime numberss
A: .word 2, 3, 5, 7, 11, 13, 17, 19, 23, 29

.text
insert MIPS instructions here.

For insertion at the comment, write a single MIPS program that will do the following:

(a) Read an integer i and load it into register $s0. (Recall that to read an integer, you use
a syscall with a 5 in register $v0. The integer read pops into $v0, overwriting the
5 that was there.)

(b) Put the starting address of A into register $s1.

(c) Store a 0 into the ith location of A. (Thus if i == 5, the 0 should overwrite the 13 in
the array A.)

(d) Use a loop to add the values of A up to the new 0 element, leaving the result in register
$s2. (You must use a loop for this.)

(e) Print the resulting sum, using syscall. (Recall that syscall requires $v0 equal to
1 to print the value in $a0.)
Your MIPS code should do what is asked for above and nothing more. In particular you
should not print a final newline or blank.

(15)2. Write portions of a single MIPS assembler language program that will call a function
PrintSum with parameters 55 and 89. The function PrintSum should add its param-
eters and print the result. It should then call a function PrintNewLinewhose code is given
below. You should give the complete code for the function PrintSum and for the call to
PrintSum. Because PrintSum calls another function, it must save the return address on
the stack at the start and must restore the return address at the end (and it should restore the
stack as well). Thus you should be implementing the following C code (almost the same as
Java, except for the printf function):

void PrintSum(int a, int b) {
int c = a + b;
printf("%i", c);
PrintNewLine();

}
void PrintNewline(void) {

printf("\n");
}
. . .
/* in main */
int x = 55, y = 89;
PrintSum(x, y);
. . .

CS 2733/2731, Final Exam, 5 May 2004 Page 2

Assume that the function PrintNewline is implemented with:

PrintNewline:
la $a0, Newl
addi $v0, $0, 4
syscall
jr $ra

.data
Newl: .asciiz "\n"

(25)3. For this problem, you are to use a xerox of Figure 5.29. (Final datapath for the single-cycle
implementation of MIPS.) You will be tracing through the path of the lw instruction on this
single-cycle model. You should use a highlighter to trace the path the instruction and associ-
ated data takes through the diagram. (Do not show data traveling to “dead-end” components,
which will eventually have no effect.) Then write in the values for the relevant control signals.
(Do not give control signals that serve to keep “dead-end” paths from having an effect.)

Use the following specific instruction:

lw $t5, 92($t1)

or in machine language form:

0x8d2d005c (in hexadecimal)
100011 01001 01101 00000 00001 011100 (fields in binary)

35 9 13 92 (fields in decimal)

Start at the left side, showing the PC coming in, and assume this instruction is read from
the Instruction memory. Don’t forget the handling of the PC by this instruction. Show what
values are traveling along the different lines, assuming the following initial values:

(a) $t1 and $t5 are registers numbers 9 and 13 (decimal), respectively.

(b) The contents of register 9 is 200 (decimal).

(c) The contents of memory at location 292 is 144 (decimal).

(d) The PC has value 16.

(Don’t forget to handle the PC as well as the rest of the instruction.)

CS 2733/2731, Final Exam, 5 May 2004 Page 3

(30)
4. For this problem you will be including an additional instruction into the multicycle datapath

described in the text, an instruction not included in the examples in the text. The new instruc-
tion is addi (add immediate).

You are to use one or more xeroxes of Figure 5.33 (the final datapath for the multicycle
implementation of MIPS). You should decide how many cycles to use (three, four, or five).
No additional datapaths are necessary, but you need to determine the control signals for each
cycle.

Use a highlighter to show the data lines traversed during each cycle, labeling the data line
with the cycle number. You must show the relevant control line values needed for each cycle.

Specifically, suppose the instruction is addi $t3, $t2, 45, which in machine language
form is:

214b002d (in hexadecimal)
001000 01010 01011 0000000000101101 (fields in binary)

8 10 11 45 (fields in decimal)

In marking the values on data lines, assume that $t2 = $10 holds the value 51.

(20)5. Consider the xerox from your text (bottom part of Figure 6.42, page 487), showing one stage
of pipelined execution where forwarding is required.

Please use a pen and/or marker to show answers directly on the xerox. There is only one
instance of forwarding here.

(a) Identify exactly what register is being forwarded, what stage it is forwarded from and
what stage it is forwarded to. (The pipeline stages are: IF, ID, EX, MEM, and WB.)

(b) Carefully highlight the line that is carrying the actual 32-bit quantity that is being for-
warded. Label this line clearly with the letter A.

(c) Identify the other forwarding line that would be used for forwarding if it were not for the
forwarding that is occurring as described and highlighted in part (b) above. Carefully
highlight this line (that could have been used to forward a 32-bit quantity, but is not in
fact being used here). Label this line clearly with the letter B.

(d) There are various lines into the Forwarding Unit that carry 5-bit register numbers. Care-
fully highlight these 5-bit lines. Label each line clearly with the letter C.

(e) There are one or more 1-bit control lines coming into the Forwarding Unit. Carefully
highlight these 1-bit lines. Label each line clearly with the letter D. What is the purpose
of these lines?

(f) Finally, there is a control line that is making the correct forwarding occur. Carefully
highlight this line. Label it clearly with the letter E.

CS 2733/2731, Final Exam, 5 May 2004 Page 4

(20)
6. Consider the xerox of Figure 6.52 from your text, showing pipelined execution. The instruc-

tions in execution are:

sub $10, $4, $8
beq $1, $3, 7 # branches to lw below
and $12, $2, $5
or $13, $2, $6
add $14, $4, $2
. . .
lw $4, 50($7)

The figure assumes the branch is taken, that is control transfers from the beq to the lw
instruction. Please use a pen and/or marker to show answers directly on Figure 6.52.

(a) On the upper figure, carefully highlight the line that is carrying the new branch address,
the address at which instruction will start on the next cycle in the lower figure. Label
this line clearly with the letter A.

(b) On the upper figure, carefully highlight the line that is providing the values used for the
bubble that will be in place during the next cycle in the lower figure. Label this line
clearly with the letter B.

(c) What kind of a bubble is in pipeline stage ID in the lower figure?

(15)7. Consider the xerox of Figure 6.56 from your text, showing how an exception is handled during
pipelined execution. (This figure is for reference, and you don’t need to draw on it.)

(a) What is the exception? (Only one was discussed at this point in the book.)

(b) In which pipeline stage is the exception occurring?

(c) Three bubbles are shown. What makes these bubbles work as bubbles, that is, why do
they have no effect on execution? (Two different answers for the two types of bubbles.)

(d) Where did the instruction at the left in the bottom figure come from? What is now
happening with the computer?

(15)8. Consider the xerox of Figure 7.8 from the text, showing the diagram for cache memory.

(a) What is the size of the field used for an index (that is, how many bits give the location
of the entry in the cache)? From this, say how many words of data this cache holds.

(b) Why does this hardware not pay attention to the low order 2 bits?

(c) Why is the Tag field in the cache 16 bits wide?

(d) Consider the process that occurs with a cache hit. How does the hardware know there is
a hit? (Be careful, there are two conditions.) How does the hardware manage to get to
the correct data without some kind of search?

(e) Describe what the text says happens on an instruction cache miss. (Four steps.)

