CS 2733/2731, Og Il, Spring 2003
Fi nal Exam Selected and Partial Answers

1
Answer to Problem 1
.globl main

nmai n: add $s7, $0, %ra # save return address
.data
A .word 4, 9, 25, 49, 121, 169, 289 # squares of first 7 prines
. text

HitHHHHHH A Answer t 0 Probl em 2 #####H#HHHHHHHHHHHHH BT

la $s1, A # start address of A
addi $s2, $0, O # running sum
addi $s3, $0, O # array index of A
addi $s4, $0, 7 # constant 7

Loop: Iw $t1, 0($s1) # $t1 = Al $s3]
add $s2, $s2, $t1 # $s2 = sumof A[] so far
addi $s1, $s1, 4 # $s1 += 4
addi $s3, $s3, 1 # $s3 += 1
bne $s3, $s4, Loop # branch back to Loop until $s4 == 7
addi $v0, $0, 1 # print the sum
add $a0, $0, $s2
syscal

#HH#RHH A HAEHE End of Answer t o Probl em 2 #######H#BHHHARHHIHT

addi $v0, $0, 4 # print a newine
la $a0, New n
syscal
add $ra, $0, $s7 # restore return address
jr $ra
.data

Newl n: .asciiz "\n"
HHHHHH T QU DUt S
tend2% spim-file examl_2.s

666

End of output

Anot her anwser:
B Y Second Answer t o Probl em 2 ######H#H B

la $s1, A # start address of A
addi $s2, $0, O # running sum
addi $s3, $0, O # array index of A
addi $s4, $0, 7 # constant 7
Loop: nmul $t0, $s3, 4 # $t0 = array index * 4
add $t2, $t0, $s1 # $t2 = start of A + offset
| w $t1, 0($t2) # $t1 = contents at start of A + offset
add $s2, $s2, $t1 # $s2 = sumof A[] so far
addi $s3, $s3, 1 # $s3 += 1
bne $s3, $s4, Loop # branch back to Loop until $s4 == 7
addi $v0, $0, 1 # print the sum
add $a0, $0, $s2
syscal

#idi st End of Second Answer to Probl em 2 ######it4

2

CS 2734, Final Exam Probl em 2
.globl main

nmai n: addu $s7, $zero, %ra

#H#H#A#HAE MAIN FOR PROB 2 #H####HBHHHHAHBHIHR
addi $a0, $0, 12 # Param = 12

jal F # call F
add $a0, $0, $vO # $v0 = ret va
li $vo, 1 # print it
syscal
jal Newl # print newine
Finish main
addu $ra, $zero, $s7 # normal end of main
jr $ra # return to system

#it#H###HH#E END OF NAl N ####H#HHHHHHHH TR

#ipH##H#H## PROB 2, function F #######H###HE
F

add $v0, $a0, $al

jr $ra
#ipH##H#H#H# END OF FUNCTI ON F ########H#

HtH#HH#HA Wit e newl | ne ###HHHHHIHHHIHHHTE

Newl
li $v0, 4
la $a0, Newl ine
syscal
jr $ra
HitHHHH R DATE #HHHHHHHHH
.data

New ine: .asciiz "\n"

HHHBHR RS AR R R R R R R R R
CQut put:

24

HHHBHBHH AR R P A R R A R R R R R R

4. Just the standard |w diagramfor the singlecycle inplenentation
with FIVE cycles

5. In the upper diagram register 2 is forwarded fromthe sub

and register 4 for the and instructions

In the Iower diagram register 4 would be forwarded fromthe and

except that register 4 is also the target of the or instruction

so it is forwarded fromthere

6. A stall is needed after the beq instruction. See Section 6.6
The stall has the formof an inserted nop instruction (all zeros),
rather than setting all control bits to zero, as happens with
the stall inserted for |w

7. (a) Single-error correction and double error correction

(b) 1 2 3 4 5 6 7 8 9 10

Data bits: 0 1 1 0 0 1

Check 1: X 0 1 0 0 set x = 1
Check 2: X 0 1 0 1 set x =0
Check 4: X 1 1 0 set x =0
Check 8: X 0 1 set x = 1
Fi nal : 1 0 0 O 1 1 0 1 0 1

(c)

Error(6): 1 0 O O 1 O O 1 O 1

Check 1: 1 0 1 0 0 passes 0
Check 2: 0 0 0 0 1 fails 2
Check 4: 0 1 0 0 fails 4
Check 8: 1 0 1 passes +0
Position in error 6

8. (a) Overflow and undefined instruction

(b) The instruction after the one causing the error.
(c) i. Detect the exception.
ii. Assum ng the exception occurs during the EX stage
(l'ike overflow for exanple), nust flush the instruction
inthe |F stage, by replacing it by all zeros (nop).
iii. Must flush the instruction in the ID stage, but inserting
zeros for control bits.
iv. Must save the next instruction address in the EPC register.
v. Mist save the reason for the exception in the Cause register.
vi. Mist put address of start of the exception handler into
the PC.

9. (a) Uses 10 bits for index (or cache address), so that the cache

hol ds 1024 words of data.

(b) Since these are words the loworder bits of any address of a
words are al ways zeros.

(c) The tag field holds the remaining bits, after leaving off the
low order 2 bits, and the next 10 bits. (10 + 2 + 20 = 32)

(d) The hardware extracts the | oworder 10 bits (except for the
lowest 2 bits), and uses these 10 bits as an address in the
cache table. At this address, the hardware checks if the
valid bit is set (soit is avalid entry), and checks if the
tag field matches the high-order 20 bits in the address being
| ooked up. A match neans a cache hit.

(e) In case of a cache mss, see page 551 at the bottom

