CS 2734, Og |l, Spring 2002
Fi nal Exam Selected and Partial Answers

1

CS 2734, Conputer Organization Il, Spring 2000
M PS program gi ving answer to Final, question 1
.globl main

mai n: addu $s7, $zero, $ra
#H#H#HHASH Start of answer to Question 1 #####HAHHAHITHHAY
.data
A .space 40
.text
I a $s0, A # address of A
addi $t0, $0, O # | oop counter, start at O
addi $t1l, $zero, 10 # to term nate |oop
add $t2, $0, $sO # address of itemin A
Loop: sw $t0, 0(%t2) # store current $t0 into A
addi $t0, $t0, 1 # increnment |oop counter
addi $t2, $t2, 4 # increnent pointer into A

bne $t0, $t1, Loop # branch back to forml oop
#upiH### End of answer to Question 1 #######HHHHHHAHHHH
Print the array

| a $al0, A

l'i $al, 10

j al Wite array
jal New

#HH#HHA#ESE Fi ni Sh i n#f#HSHHH TR
addu $ra, $zero, $s7
jr $ra
HEHAHAHHASH Wit e an array #HH#H#HAHHTH TR
Wite array:

addi $sp, $sp, -4 # roomfor $ra on stack
sw $ra, 0(%sp) # save $ra because not | eaf
initialization for |oop
nove $s0, $a0 # $s0 = $a0 = start of A
nove $s1, %al # $s1 = $al = N
nmove $t1, $zero # start $t1 = 0, the index
LoopA: beq $s1, $t1, EndA # if (N == index) goto EndA

wite value for Ali]
addu $t2, $t1, $t1
addu $t2, $t2, $t2
addu $t2, $s0, $t2 # $t2 = index*4 + start of A

l'i $vo, 1
| w $a0, 0O($t2) # integer to print
syscal |
wite a blank

j al Bl an
addi $t1, $t1, 1
] LoopA

EndA: | w $ra, 0O($sp)
addi $sp, $sp, 4

ir $ra

HARBHHHHAR Wit e newl | ne #HARBHHHHHHR BRI

New : | $vOo, 4
| a $a0, New ine
syscal |
jr $ra
HUfHHHAEHER Wit e bl ank #HBHSHEHEHEHSE R HHR
Bl an: li $vO0, 4
| a $a0, Bl ank
syscal |
jr $ra
.data
Bl ank: .asciiz " "
Newl i ne: .asciiz "\n"

HURHHHHHHHRHH OUt pUt HHEABHHH T
four06%spim-file quizd.s

#0123456789

HRHHHHH

Al ternatively, the followi ng code uses the mul pseudo-instr:

#HH#H#HHAH Start of answer to Question 1 #####HAHHAHITHHAY

.data

A. .space 40
.text
| a $s0, A # address of A
addi $t0, $0, O # | oop counter, start at O
addi $t1l, $zero, 10 # to term nate |oop

Loop: mul $t2, $tO, 4 # pseudo-instr, nult $t0 by 4
add $t3, $t2, $s0 # add to start addr of A
sw $t0, 0O(%t3) # store current $t0 into A
addi $t0, $t0, 1 # increnent |oop counter

bne $t0, $t1, Loop # branch back to forml oop
#ipifH#H##H# End of answer to Question 1 ####HAHAHRHSHIHIHY
2.
#H###H# CS 2734, Final Exam Probl em 2 #######
.globl main
mai n: addu $s7, $zero, %ra

#aH###HH#ARE MAIN FOR PROB 2 #####H#HHHBHHHBHHH

addi $a0, $0, 12 # Param = 12
j al F # call F
add $a0, $0, $vO # $v0 = ret va
li $vo, 1 # print it
syscal |
j al New # print newine
Finish main
addu $ra, $zero, $s7 # normal end of main
ir $ra # return to system

#a#H#HHH#ARE END OF MAl N #E##H#BHHHBHHHBHHHBHHH

#e#HHH###E PROB 2, function F #######HHHHHH
F

add $v0, $a0, %al

jr $ra
#it#####HH#E END OF FUNCTI ON F #####H#HHHH

HARBH#HHHHR Wit e newl | ne #HARBHHHHHTR BRI

New :
li $vO0, 4
| a $a0, New ine
syscal |
jr $ra
HitHH###### DATE #H#H###HHHHHHHHHHHHHH T
.data

New i ne: .asciiz "\n"

HAHH PR H PR H PR H PR PR TR R R R

Qut put :

24

HAHH PR H PR H PR H PR H PR H PR TR R R

3. This instruction is like the first part of |w or sw
and the last part of add. No additional data |ines

or control lines are needed.

Fetching the instruction, updating the PC, and fetching
registers are the sane as for all instructions.

The ALU does the same as for |w or sw

ALUresult = (Qutput of Read data 1) + sign-extend(lR 15-0]);

The control settings are the sane as for those instructions:
ALUSrc = 1, ALUDp = 00. (So that input to ALU beconmes 010 (add).)

For the rest, we have to route the ALUresult around back into the
register file, using IR 20-16] for the register

(Note that add has Reg[| R 15-11]] = ALUresult)

Thus we need RegWite = 1, MemoReg = 0, and RegDest = 0.

(Note that add needs RegDest = 1, because the destination

register is in bits 15-11 for add, while it is bits 20-16 for addi.)

5. In the upper diagram register 2 is forwarded fromthe sub
and register 4 for the and instructions.

In the |l ower diagram register 4 would be forwarded fromthe and,
except that register 4 is also the target of the or instruction,
so it is forwarded fromthere.

6. A stall is needed after the Iwinstruction. See Section 6.5.
The Hazard Detection Unit notices that a lwinstruction is

in Stage 3 (by checking that the MenRead flag is 1). It also
checks that the result of the Iwis in a register needed by the

next instruction. 1In this case it inserts a 1-cycle stall

by inserting zeros in for the control signals, and by deasserting
the IF/IDWite control line, so that nothing is witten into

the IF/ID on that cycle. It also deasserts the PCWite signal,

so that nothing is witten into the PC. Thus the next instruction
is not_ witteninto IF/IDuntil IF/IDWite is asserted again, when

the flow of instructions can start up. Also the PC value is not
updated until the next cycle.

Thus a "bubble" is created in the sequence of instructions going
through. Two cycles later (see Fig. 6.48) when the |winstruction
isinits final stage and when the following and instruction is
inits execute stage, the value of $2 nust be forwarded into the

ALU for use by the and instruction, using the Forwarding unit

as for other data hazards. At the sane tinme, |w finishes |oading

the new value into $2.

7. (a) 14 bits for the index neans 2714 entries = 16K words = 64K bytes
of data in the cache.

(b) The address should be a word address, so the low order 2 bits
will always be Os.

(c) These are the remaining bits of the address, 32 - 14 - 2 = 16
After we know that bits 1-0 are Os, that bits 15-2 match because

they are the sanme index entry, we need to check the remaining 16 bits
31-16 with the 16 bits in the tag field to see that the addresses

are exactly the sane.

(d) The hardware uses bits 15-2 as an index into the cache to directly
access a word, with no searching. |If bits 31-16 match the Tag

field and if the Valid bit is on, thereis a hit.

(c) See the four itens at the bottom of page 551

8. Wien the clock signal is asserted (rising clock edge), the val ue
of D (asserted) goes through the first D latch, but waits at the
second D latch until the clock deasserts (falling clock edge).

At this point the value of D gets all the way through the flip-flop

