
CS 2734, Org II, Spring 2002
Final Exam, Selected and Partial Answers

1.
 # CS 2734, Computer Organization II, Spring 2000
 # MIPS program giving answer to Final, question 1
 .globl main
 main: addu $s7, $zero, $ra
 ########## Start of answer to Question 1 ################
 .data
 A: .space 40
 .text
 la $s0, A # address of A
 addi $t0, $0, 0 # loop counter, start at 0
 addi $t1, $zero, 10 # to terminate loop
 add $t2, $0, $s0 # address of item in A
 Loop: sw $t0, 0($t2) # store current $t0 into A
 addi $t0, $t0, 1 # increment loop counter
 addi $t2, $t2, 4 # increment pointer into A
 bne $t0, $t1, Loop # branch back to form loop
 ########## End of answer to Question 1 ##################
 ## Print the array
 la $a0, A
 li $a1, 10
 jal Write_array
 jal Newl
 ########## Finish main###################
 addu $ra, $zero, $s7
 jr $ra
 ########## write an array ###############
 Write_array:
 addi $sp, $sp, -4 # room for $ra on stack
 sw $ra, 0($sp) # save $ra because not leaf
 ## initialization for loop
 move $s0, $a0 # $s0 = $a0 = start of A
 move $s1, $a1 # $s1 = $a1 = N
 move $t1, $zero # start $t1 = 0, the index
 LoopA: beq $s1, $t1, EndA # if (N == index) goto EndA
 ## write value for A[i]
 addu $t2, $t1, $t1
 addu $t2, $t2, $t2
 addu $t2, $s0, $t2 # $t2 = index*4 + start of A
 li $v0, 1
 lw $a0, 0($t2) # integer to print
 syscall
 ## write a blank
 jal Blan
 addi $t1, $t1, 1
 j LoopA
 EndA: lw $ra, 0($sp)
 addi $sp, $sp, 4
 jr $ra

- 1 -

 ########## write newline ################
 Newl: li $v0, 4
 la $a0, Newline
 syscall
 jr $ra
 ########## write blank ##################
 Blan: li $v0, 4
 la $a0, Blank
 syscall
 jr $ra

 .data
 Blank: .asciiz " "
 Newline: .asciiz "\n"
 ############### output #############################
 # four06% spim -file quiz4.s
 # 0 1 2 3 4 5 6 7 8 9
 ##

Alternatively, the following code uses the mul pseudo-instr:

 ########## Start of answer to Question 1 ################
 .data
 A: .space 40
 .text
 la $s0, A # address of A
 addi $t0, $0, 0 # loop counter, start at 0
 addi $t1, $zero, 10 # to terminate loop
 Loop: mul $t2, $t0, 4 # pseudo-instr, mult $t0 by 4
 add $t3, $t2, $s0 # add to start addr of A
 sw $t0, 0($t3) # store current $t0 into A
 addi $t0, $t0, 1 # increment loop counter
 bne $t0, $t1, Loop # branch back to form loop
 ########## End of answer to Question 1 ##################

2.
CS 2734, Final Exam, Problem 2
 .globl main
main: addu $s7, $zero, $ra

########## MAIN FOR PROB 2 #################
 addi $a0, $0, 12 # Param = 12
 jal F # call F
 add $a0, $0, $v0 # $v0 = ret val
 li $v0, 1 # print it
 syscall
 jal Newl # print newline

Finish main
 addu $ra, $zero, $s7 # normal end of main
 jr $ra # return to system
########## END OF MAIN #####################

- 2 -

########## PROB 2, function F ############
F:
 add $v0, $a0, $a0
 jr $ra
########## END OF FUNCTION F ##########

########## write newline ################
Newl:
 li $v0, 4
 la $a0, Newline
 syscall
 jr $ra
########## DATE #########################
 .data
Newline: .asciiz "\n"
###
Output:
24
###

3. This instruction is like the first part of lw or sw
and the last part of add. No additional data lines
or control lines are needed.

Fetching the instruction, updating the PC, and fetching
registers are the same as for all instructions.

The ALU does the same as for lw or sw:
ALUresult = (Output of Read data 1) + sign-extend(IR[15-0]);
The control settings are the same as for those instructions:
ALUSrc = 1, ALUOp = 00. (So that input to ALU becomes 010 (add).)

For the rest, we have to route the ALUresult around back into the
register file, using IR[20-16] for the register.
(Note that add has Reg[IR[15-11]] = ALUresult)
Thus we need RegWrite = 1, MemtoReg = 0, and RegDest = 0.
(Note that add needs RegDest = 1, because the destination
register is in bits 15-11 for add, while it is bits 20-16 for addi.)

4. Just the standard lw diagram for the multi-cycle implementation.

5. In the upper diagram, register 2 is forwarded from the sub
and register 4 for the and instructions.
In the lower diagram, register 4 would be forwarded from the and,
except that register 4 is also the target of the or instruction,
so it is forwarded from there.

6. A stall is needed after the lw instruction. See Section 6.5.
The Hazard Detection Unit notices that a lw instruction is
in Stage 3 (by checking that the MemRead flag is 1). It also
checks that the result of the lw is in a register needed by the

- 3 -

next instruction. In this case it inserts a 1-cycle stall,
by inserting zeros in for the control signals, and by deasserting
the IF/IDWrite control line, so that nothing is written into
the IF/ID on that cycle. It also deasserts the PCWrite signal,
so that nothing is written into the PC. Thus the next instruction
is _not_ written into IF/ID until IF/IDWrite is asserted again, when
the flow of instructions can start up. Also the PC value is not
updated until the next cycle.

Thus a "bubble" is created in the sequence of instructions going
through. Two cycles later (see Fig. 6.48) when the lw instruction
is in its final stage and when the following and instruction is
in its execute stage, the value of $2 must be forwarded into the
ALU for use by the and instruction, using the Forwarding unit
as for other data hazards. At the same time, lw finishes loading
the new value into $2.

7. (a) 14 bits for the index means 2^14 entries = 16K words = 64K bytes
of data in the cache.
(b) The address should be a word address, so the low order 2 bits
will always be 0s.
(c) These are the remaining bits of the address, 32 - 14 - 2 = 16.
After we know that bits 1-0 are 0s, that bits 15-2 match because
they are the same index entry, we need to check the remaining 16 bits
31-16 with the 16 bits in the tag field to see that the addresses
are exactly the same.
(d) The hardware uses bits 15-2 as an index into the cache to directly
access a word, with no searching. If bits 31-16 match the Tag
field and if the Valid bit is on, there is a hit.
(c) See the four items at the bottom of page 551.

8. When the clock signal is asserted (rising clock edge), the value
of D (asserted) goes through the first D latch, but waits at the
second D latch until the clock deasserts (falling clock edge).
At this point the value of D gets all the way through the flip-flop

- 4 -

