CS 2734, Og |l, Spring 2001
Fi nal Exam Selected and Partial Answers

1
Answer to Final Exam Problem 1
.globl main

mai n: add $s7, $0, %$ra # save return address
.data
A .word 2, 4, 6, 8, 10, 12, 14, 16, 18, 20
. text

HURHHHHHH R HHHE Answer t 0 Probl em 1 ########HHHHHBHHHHHH TR

|l a $s1, A # start address of A
addi $s2, $0, O # runni ng sum
addi $s3, $0, O # array index of A
addi $s4, $0, 10 # constant 10

Loop: |w $t1, 0(%sl) # $t1 = A $s3]
add $s2, $s2, $t1 # $s2 = sumof Al] so far
addi $s1, $s1, 4 # $s1 += 4
addi $s3, $s3, 1 # $s3 += 1
bne $s3, $s4, Loop # brach back to Loop until $s4 == 10
addi $v0, $0, 1 # print the sum
add $a0, $0, $s2
syscal |

#ipiffHH#s#H End of answer to Probl em 1 ########H#HEHEHSHIHIHR

addi $v0, $0, 4 # print a newine
|l a $a0, New n
syscal |
add $ra, $0, $s7 # restore return address
jr $ra
.data

New n: .asciiz "\n"

HER T QU put #RREHHHHHHHE
four06% spim-file examL_2.s

110

Anot her anwser:
Rt Second Answer t o Probl em 1 ######HEHEHIHIHIHIH

Il a $s1, A # start address of A
addi $s2, $0, O # runni ng sum
addi $s3, $0, O # array index of A
addi $s4, $0, 10 # constant 10
Loop: mul $t0, $s3, 4 # $t0 = array index * 4
add $t2, $t0, $s1 # $t2 = start of A + offset
| w $t1, 0O($t2) # $t1 = contents at start of A + offset
add $s2, $s2, $t1 # $s2 = sumof Al] so far
addi $s3, $s3, 1 # $s3 +=1
bne $s3, $s4, Loop # brach back to Loop until $s4 == 10

addi $v0, $0, 1 # print the sum
add $a0, $0, $s2
syscal |

#Hitp##HHH R HHHE End of answer to Probl em 1 #########HH#H##RH#HH

2.

CS 2734, Final Exam Probl em 2
.globl main

mai n: addu $s7, $zero, $ra

#H#pH##HAH MAILN FOR PROB 2 ###H#HHBHAHHBHHHHRH

addi $a0, $0, 12 # Param = 12
j al F # call F
add $a0, $0, $vO # $v0 = ret va
l'i $vo, 1 # print it
syscal |
j al New # print newine
Finish main
addu $ra, $zero, $s7 # normal end of main
jr $ra # return to system

wH#pH##HAH END OF MAl N #BHHHHBHABHBHHBH AR

#e##HH###E PROB 2, function F ######H#HHHHHH
F

add $v0, $a0, %al

jr $ra
Hi######E END OF FUNCTI ON F ##t##

HERH#HHHHE Wit e newl | ne #ARB#HHHHTR BRI

New :
I $v0, 4
| a $a0, New i ne
syscal |
jr $ra
#agHHH###Y DATE #HA##HHHHBHAHIRBHHHBRHHH I
.data

New i ne: .asciiz "\n"

HAHH PR H PR H PR H PR H PR TR TR R R

Qut put:

24

HAHH PR H PR H PR H PR H PR TR R R R

3. This instruction is like the first part of Iwor sw
and the last part of add. No additional data |ines

or control lines are needed.

Fetching the instruction, updating the PC, and fetching
registers are the sane as for all instructions.

The ALU does the sanme as for |w or sw

ALUresult = (Qutput of Read data 1) + sign-extend(IR 15-0]);
The control settings are the sane as for those instructions:
ALUSrc = 1, ALUODp = 00. (So that input to ALU beconmes 010 (add).)

For the rest, we have to route the ALUresult around back into the
register file, using IR 20-16] for the register

(Note that add has Reg[I R 15-11]] = ALUresult)

Thus we need RegWite = 1, MemoReg = 0, and RegDest = 0.

(Note that add needs RegDest = 1, because the destination

register is in bits 15-11 for add, while it is bits 20-16 for addi.)

5. (b) In executing the second instruction (and), the val ue conputed
for $2 by the sub nmust be forwarded into the ALU. The need for
this is detected by the forwarding unit, and the actual forwarding

is carried by asserting a control line to a nulitplexor in front
of the ALU.
6. Astall is needed after the Iwinstruction. See Section 6.5.

The Hazard Detection Unit notices that a lwinstruction is
in Stage 3 (by checking that the MenRead flag is 1). It also
checks that the result of the Iwis in a register needed by the

next instruction. 1In this case it inserts a 1-cycle stall

by inserting zeros in for the control signals, and by deasserting
the IF/IDWite control line, so that nothing is witten into

the IF/IDon that cycle. It also deasserts the PCWite signal,

so that nothing is witten into the PC. Thus the next instruction
is not_ witteninto IF/IDuntil IF/IDWite is asserted again, when

the flow of instructions can start up. Also the PC value is not
updated until the next cycle.

Thus a "bubble" is created in the sequence of instructions going
through. Two cycles later (see Fig. 6.48) when the |winstruction
isinits final stage and when the following and instruction is
inits execute stage, the value of $2 nust be forwarded into the
ALU for use by the and instruction, using the Forwarding unit

as for other data hazards. At the sane tinme, |w finishes |oading
the new val ue into $2.

7. There is a stall on beq in case of a successful branch

One noves beq into cycle 2 to allow execution at the branch target
instruction with only one cycle stall. (O herw se, one would need
2 or nore cycles of stall.) The new hardware in cycle 2 is an
adder to calculate the branch address, and to add a conparer

to conpare the two branch registers for equality. The result of
the conparer will set a control line IF.Flush to turn the newy
fetched instruction into a nop by zeroing the | F/ID pipeline
register.

8. (a) 14 bits for the index neans 2714 entries = 16K words = 64K bytes
of data in the cache.

(b) The address should be a word address, so the low order 2 bits
will always be Os.

(c) These are the remaining bits of the address, 32 - 14 - 2 = 16
After we know that bits 1-0 are Os, that bits 15-2 match because

they are the sanme index entry, we need to check the remaining 16 bits
31-16 with the 16 bits in the tag field to see that the addresses

are exactly the sane.

(d) The hardware uses bits 15-2 as an index into the cache to directly
access a word, with no searching. |If bits 31-16 match the Tag

field and if the Valid bit is on, thereis a hit.

(c) See the four itens at the bottom of page 551

9. Wien the clock signal is asserted (rising clock edge), the val ue
of D (asserted) goes through the first D latch, but waits at the
second D latch until the clock deasserts (falling clock edge).

At this point the value of D gets all the way through the flip-flop

