Cs 2733/2731, Og Il, Fall 2002 New ine: .asciiz "\n"

Fi nal Exam Selected and Partial Answers HUHBHHBHBHHBH B H BB H R H B R H B R R R
Qut put :
1. #2 46 8 10 12 14 16 18 20

CS 2734, Conputer Organization Il, Fall 2000 HHAHHBHHHHBH B A R H B R R R H R

MPS program giving answer to Final, question 1 e oo
.globl main 2

mai n: addu $s7, S$zero, $ra #it### CS 2734, Final Exam Probl em 2 #####i##

#HepaaHR#H Start of answer to Question 1 #####HH#HHHHHHH###H# .globl main
.data nai n: addu $s7, $zero, $ra

A. .space 40
. text HepRRR#HHE main for prob 2 ##HHHHHHHH T
la $s0, A # address of A addi $a0, $0, 55 # Paranl = 55
addi $t0, $0, O # |l oop counter, start at 0 addi $al, $0, 89 # Paran2 = 89
addi $t1, $zero, 10 # to termnate |oop jal Print Sum # call PrintSum
addi $t2, $zero, 2 # value to store #it#######E end of main for prob 2 ######HHHHIH

Loop: sw $t2, 0($s0) # store current $t0 into A # Finish main
addi $t0, $t0, 1 # increnment | oop counter addu $ra, $zero, $s7 # normal end of main
addi $s0, $s0, 4 # increment pointer into A jr $ra # return to system
addi $t2, $t2, 2 # increnent pointer into A #un#HBH#H#H end of mai N B#HHHHBHHBHAHHBHBHHBHBHH
bne $t0, $t1, Loop # branch back to formloop

#itH######E End of answer to Question 1 ######HBHHHHHHHHHE #itH#####RE prob 2, function Print Sum #######H##

Print the array Pri nt Sum

la $a0, A addi $sp, $sp, -4

$al, 10 sw $ra, 0($sp)
jal Wite_array add $a0, $a0, $al
jal New addi $v0, $0, 1
Hit##HHH#E Fioni sh mai n ###H T syscal
addu $ra, $zero, $s7 jal PrintNew ine
jr $ra I w $ra, 0($sp)
HHHHHHHH Wit e an array #HHHHHHEHHHE addi $sp, $sp, 4
Wite_array: jr $ra
addi $sp, $sp, -4 # roomfor $ra on stack #it###H###H end of function Print Sum ########tH#
sw $ra, 0($sp) # save $ra because not | eaf
initialization for |oop #itH######E function Print Newl i ne ########H#HHH##
nove $s0, $a0 # $s0 = $a0 = start of A Print New i ne:
nove $s1, $al # $s1 = $al = N la $ao0, Newl
nove $t1, $zero # start $t1 = 0, the index addi $v0, $0, 4
LoopA: beq $s1, $t1, EndA # if (N == index) goto EndA syscal |
wite value for Ali] ir $ra
addu $t2, $t1, $t1 .data
addu $t2, $t2, $t2 New : .asciiz "\n"
addu $t2, $s0, $t2 # $t2 = index*4 + start of A B R R I R R i R I
li $vo, 1 # CQut put:
I w $a0, 0O($t2) # integer to print # 144
syscal | HEHHBHHHHHHHHHHH AR
wite a blank] e e e e e e oo
jal Bl an 3. Just the standard sw diagramfor the singlecycle inplenmentation.
addi St1, StL, 1 e oo
j LoopA 4. This instruction is like the first part of Iwor sw
EndA: I'w $ra, 0($sp) and the last part of add. No additional data |ines
addi $sp, $sp, 4 or control |ines are needed.
jr $ra Cycles 1 and 2 are conmon to all instructions and are the sane
Hit##HHH###E wite new ine for this one.
New : li $v0, 4
la $a0, New ine Cycle 3 is the sane as that for lwor sw
syscal | ALUQut = A + sign-extend(IR[15-0]); The control settings
jr $ra are the same as for those instructions: ALUSrcA = 1,
Hit##HHH####E wite bl ank ALUSrcB = 10 (2 decimal), ALUO = 00.
Bl an: li $vo, 4
la $a0, Bl ank Cycle 4 (the last cycle) is alnobst the sane as that of add:
syscal | Reg[I R[20-16]] = AULQut. (add has Reg[| R 15-11]] = ALUQut)
jr $ra Thus we need RegWite = 1, MentoReg = 0, and RegDest = 0.
it DATA #HHTHHTHHHH (Note that add needs RegDest = 1, because the destination
.data register is in bits 15-11 for add, while it is bits 20-16 for addi.)

Bl ank: .asciiz e

5. Inputs E and F are 5-bit register nunbers that are operand

regi sters needed by the and instruction. (E for the upper input into
the ALU, and F for the lower.)

Input Ais the 5-bit register nunber giving the destination register
of the sub instruction. Input Cis the sane for the next instruction
(just shown as ‘‘before’’ in the diagran).

Input Bis the signal to allowwiting into the register file, so
that writeback can occur. D is the sane signal fromthe next

pi peline stage (not used in this diagran.

One has == E and B asserted, so the register val ue deternined
for register $2 by the sub instruction is the sane as the first
operand of the follow ng and instruction, and B asserted neans
that writeback of $2 will occur.

The actual forwarding line is the dark line fromthe MEM st age,
goi ng down, over to the left, up and into the upper nultiplexor
and the | owest entry.

6. A stall is needed after the Iwinstruction. See Section 6.5.
The Hazard Detection Unit notices that a Iwinstructionis

in Stage 3 (by checking that the MenRead flag is 1). It also
checks that the result of the lwis in a register needed by the

next instruction. In this case it inserts a 1-cycle stall,
by inserting zeros in for the control signals, and by deasserting
the IF/IDWite control line, so that nothing is witten into

the IF/ 1D on that cycle. It also deasserts the PCWite signal,

so that nothing is witten into the PC. Thus the next instruction
is _not_ witteninto IF/IDuntil IF/IDWite is asserted again, when
the flow of instructions can start up. Al so the PC value is not
updated until the next cycle.

Thus a "bubble" is created in the sequence of instructions going
through. Two cycles later (see Fig. 6.48) when the Iw instruction
isinits final stage and when the followi ng and instruction is
inits execute stage, the value of $2 nust be forwarded into the
ALU for use by the and instruction, using the Forwarding unit

as for other data hazards. At the same tine, |w finishes |oading
the new value into $2.

7. (a) Wen the systemstarts your program it starts at line 29.
Then the "jal main" class the main function and starts the earlier
code labeled with "main:". Finally, control returns to line 30
whi ch does a MPS exit.

(b) Start in on line 17 when there is any exception. This wll
print the nessage "Duhh-hhhhh!", fetch the EPC value (of the offending
instruction, add 4 to it to give the next instruction, and return
to that instruction.

8. When the clock signal is asserted (rising clock edge), the value
of D (asserted) goes through the first D latch, but waits at the
second D latch until the clock deasserts (falling clock edge).

At this point the value of D gets all the way through the flip-flop

