CS 2734, Org Il, Fall 2000
Fi nal Exam Selected and Partial Answers

1

CS 2734, Conputer Organization Il, Fall 2000
M PS program gi ving answer to Final, question 1
.globl main
mai n: addu $s7, S$zero, $ra
#HipaaHHH Start of answer to Question 2 #i##H#HHHHHHHH#H#IH
.data
A. .space 40
. text
la $s0, A # address of A
addi $t0, $0, O # |l oop counter, start at O
addi $t1, $zero, 10 # to termnate |oop
add $t2, $0, $sO # address of itemin A
Loop: sw $t0, 0O($t2) # store current $t0 into A
addi $t0, $tO, 1 # increnent | oop counter
addi $t2, $t2, 4 # increnment pointer into A

bne $t0, $t1, Loop # branch back to formloop

#rp######H End of answer to Questi HEHHH
Print the array

la $a0, A

li $al, 10

jal Wite_array

jal Newl
HHHH#AHHAR Fini sh mai n#EH#REHHARHH T

addu $ra, $zero, $s7

jr $ra
HitH#HHHHE Wit e an array #efHHHHHHHHHH
Wite_array:
addi $sp, $sp, -4 # roomfor $ra on stack
sw $ra, 0($sp) # save $ra because not | eaf
initialization for |oop
nmove $s0, $a0 # $s0 = $a0 = start of A
nove $s1, $al # $s1 = $al = N
nove $t1, $zero # start $t1 = 0, the index
LoopA: beq $s1, $t1l, EndA # if (N == index) goto EndA

wite value for Ali]
addu $t2, $t1, $t1
addu $t2, $t2, $t2
addu $t2, $s0, $t2 # $t2 = index*4 + start of A
1

li $vo,
Iw $a0, 0($t2) # integer to print
syscal
wite a bl ank
jal Bl an
addi $t1, $t1, 1
j LoopA
EndA: I w $ra, 0($sp)
addi $sp, $sp, 4
jr $ra
#HHRHHHSH Wit e newl | ne #HHHHHHHH I
New : li $v0, 4
la $a0, Newline
syscal
jr $ra
#HHpfdHHH Wi t e bl ank #efiHHHHHHH I
Bl an: li $v0, 4
la $a0, Bl ank
syscal
jr $ra
.data
Bl ank: .asciiz " "
New i ne: .asciiz "\n"

HtH#HIH A out put
four06% spim-file quiz4.s

#0123456789

LSRG R B EY R B G R R S R R R S R

Al'ternatively, the follow ng code uses the nmul pseudo-instr:

#H#HHHHHHE Start of answer to Question 2 #####H#HHHHHHHIHHIT

.data
A .space 40
.text
la $s0, A # address of A
addi $t0, $0, O # | oop counter, start at O
addi $t1l, $zero, 10 # to termnate |oop
Loop: mul $t2, $t0, 4 # pseudo-instr, mult $t0 by 4
add $t3, $t2, $s0 # add to start addr of A
swW $t0, 0($t3) # store current $t0 into A
addi $t0, $t0, 1 # increnent | oop counter
bne $t0, $t1, Loop # branch back to formloop
#idHH End of answer to Questi on 2 #iftffHiHH##HHHHTHTHHT
2
#it### CS 2734, Final Exam Probl em 2 #####i##
.globl main
mai n: addu $s7, $zero, $ra

#He#AH###HE MAIN FOR PROB 2 ########H###HHHHHHE

addi $a0, $0, 12 # First param= 12
addi $al, $0, 45 # Second param = 45
jal Addup # cal |l Addup

add $a0, $0, $vO # $v0 = ret va

li $v0, 1 # print it

syscal

jal Newl # print newine

Finish main
addu $ra, $zero, $s7 # normal end of main
jr $ra return to system

#HH#H###H#E END OF MAIN f t

#Hit###H##E PROB 8, function Addup ######HHH#H#
Addup:

add $v0, $al, $al

jr $ra
#i######HH END OF FUNCTI ON Addup #######H#HHHE

HHHBHHHRH Wit e newW | ne H##BHHHRHIHHRIHHRY

Newl
I $v0, 4
la $a0, Newline
syscal
jr $ra
#ipHH#H AT DATA #H#HAHHBHAHHBHHHHAHHRHRHH
.data

Newl i ne: .asciiz "\n"

BB HHH
Qut put:

57

4. See pages 477 and 481. Considering the lines fromleft

to

right, the first two lines require data forwarding controlled

by the forwarding unit (one forwarded fromthe next cycle
the other forwarded fromtwo cycles down.) The third line

and

is handl ed by having the Register File wite inits first half
cycle and read in its second half cycle, so the data value is
already witten by the tine it needs to be read. The final
line goes forward in tinme and is not a hazard at all.

5. Refer to the material before the diagram on page 487.

In the top diagram the instruction "or $4, $4, $2" needs

the results of two previous instructions, namely the result of
the "add $4, ..." that will be in $4, which is forwarded back
into the ALU from Stage 4, and the result of "sub $2, ..."
which is forwarded back into the ALU from Stage 5.

The register values are always available, but the forwarding
unit processes the register _nunbers_, and sets control signals
so that a nultiplexor picks off the forwarded register val ue.

In the bottomdiagram the instruction "add $9, $4, $2" needs
the value of the register $4, which has been cal cul ated by

the next instruction "or, $4, ...", and is forwarded from
Stage 4. Note that there is another conputed value for $4,

cal cul ated one cycle earlier and available from Stage 5, but

the forwarding unit will not use this earlier value.

6. Astall is needed after the Iwinstruction. See Section 6.5.
The Hazard Detection Unit notices that a Iwinstructionis

in Stage 3 (by checking that the MenRead flag is 1). It also
checks that the result of the Iwis in a register needed by the

next instruction. In this case it inserts a 1-cycle stall,
by inserting zeros in for the control signals, and by deasserting
the IF/IDWite control line, so that nothing is witing into

the IF/ID on that cycle. It also deasserts the PCWite signal,

so that nothing is witten into the PC. Thus the next instruction
is _not_ witteninto IF/IDuntil IF/IDWite is asserted again, when
the flow of instructions can start up. Al so the PC value is not
updated until the next cycle.

Thus a "bubble" is created in the sequence of instructions going
through. Two cycles later (see Fig. 6.48) when the Iwinstruction
isinits final stage and when the followi ng and instruction is
inits execute stage, the value of $2 nmust be forwarded into the
ALU for use by the and instruction, using the Forwarding unit
as for other data hazards. At the same tinme, |w finishes |oading
the new value into $2.
7. There is a stall on beq in case of a successful branch.
One noves beq into cycle 2 to allow execution at the branch target
instruction with only one cycle stall. (Qherw se, one would need
2 or nore cycles of stall.) The new hardware in cycle 2 is an
adder to calculate the branch address, and to add a conparer
to conpare the two branch registers for equality. The result of
the conparer will set a control line IF.Flush to turn the newy
fetched instruction into a nop by zeroing the |F/ID pipeline
register.
8. W tal ked about three kinds of coding:

source (using conpression)

channel (using error detection/correction)

secrecy (using cryptography)

Bit positions 0 (overall parity), 1, 2, 4, 8, and 16 are used
as check bits, if there are 24 bits altogether (plus the Oth bit).

The bit in position 1 is used to check the parity of the odd-nunbered bits.

The full Hanm ng code gives single error correction and double error
det ection.

9. The exception handl er gets invoked automatically in case of an
exception (internal unusual event, such as overflow or undefined

instruction) or an interrupt (external unusual event, such as an

I/ O device wanting service). nfcO has coprocessor 0 nove the EPC

(in coprocessor O register $14) into ordinary register $kO (used by

the kernel). rfe resets the status register so that the program

will no | onger execute in supervisory node. The addiu adds 4 to the
EPC val ue, so that we return to the instruction after the offending one.
jr $k0 does the actual return.

10. (a) 14 bits for the index nmeans 2714 entries = 16K words = 64K bytes
of data in the cache.

(b) The address should be a word address, so the low order 2 bits

will always be Os.

(c) These are the renmining bits of the address, 32 - 14 - 2 = 16.

After we know that bits 1-0 are 0s, that bits 15-2 match because

they are the sane index entry, we need to check the remaining 16 bits
31-16 with the 16 bits in the tag field to see that the addresses

are exactly the sane.

(d) The hardware uses bits 15-2 as an index into the cache to directly
access a word, with no searching. |If bits 31-16 natch the Tag

field and if the Valid bit is on, thereis a hit.

(c) See the four itens at the bottom of page 551.

