
XL

C

Enterprise

Edition

for

AIX

XL

C

Language

Reference

Version

7.0

SC09-7895-00

���

XL

C

Enterprise

Edition

for

AIX

XL

C

Language

Reference

Version

7.0

SC09-7895-00

���

Note!

Before

using

this

information

and

the

product

it

supports,

be

sure

to

read

the

general

information

under

“Notices”

on

page

183.

First

Edition

(September,

2004)

This

edition

applies

to

Version

7.0.0

of

IBM

XL

C

Enterprise

Edition

for

AIX®

(product

number

5724-I10)

and

to

all

subsequent

releases

and

modifications

until

otherwise

indicated

in

new

editions.

IBM

welcomes

your

comments.

You

can

send

them

by

the

Internet

to

the

following

address:

compinfo@ca.ibm.com

Include

the

title

and

order

number

of

this

book,

and

the

page

number

or

topic

related

to

your

comment.

Be

sure

to

include

your

e-mail

address

if

you

want

a

reply.

When

you

send

information

to

IBM,

you

grant

IBM

a

nonexclusive

right

to

use

or

distribute

the

information

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

International

Business

Machines

Corporation

1998,

2004.

All

rights

reserved.

US

Government

Users

Restricted

Rights

–

Use,

duplication

or

disclosure

restricted

by

GSA

ADP

Schedule

Contract

with

IBM

Corp.

Contents

About

This

Reference

.

.

.

.

.

.

.

.

. v

The

IBM

Language

Extensions

.

.

.

.

.

.

.

. vi

Features

Related

to

GNU

C

.

.

.

.

.

.

.

. vi

Highlighting

Conventions

.

.

.

.

.

.

.

.

. vii

How

to

Read

the

Syntax

Diagrams

.

.

.

.

.

. vii

Chapter

1.

Scope

and

Linkage

.

.

.

.

. 1

Scope

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Block

Scope

.

.

.

.

.

.

.

.

.

.

.

.

.

. 2

Function

Scope

.

.

.

.

.

.

.

.

.

.

.

. 3

Function

Prototype

Scope

.

.

.

.

.

.

.

.

. 3

Global

Scope

.

.

.

.

.

.

.

.

.

.

.

.

. 3

Name

Spaces

of

Identifiers

.

.

.

.

.

.

.

. 3

Program

Linkage

.

.

.

.

.

.

.

.

.

.

.

.

. 4

Internal

Linkage

.

.

.

.

.

.

.

.

.

.

.

. 4

External

Linkage

.

.

.

.

.

.

.

.

.

.

.

. 5

No

Linkage

.

.

.

.

.

.

.

.

.

.

.

.

.

. 5

Chapter

2.

Lexical

Elements

.

.

.

.

.

. 7

Tokens

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Punctuators

.

.

.

.

.

.

.

.

.

.

.

.

.

. 7

Source

Program

Character

Set

.

.

.

.

.

.

.

. 8

Escape

Sequences

.

.

.

.

.

.

.

.

.

.

.

. 9

The

Unicode

Standard

.

.

.

.

.

.

.

.

.

. 10

Trigraph

Sequences

.

.

.

.

.

.

.

.

.

.

. 11

Multibyte

Characters

.

.

.

.

.

.

.

.

.

. 11

Comments

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 12

Identifiers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 13

Reserved

Identifiers

.

.

.

.

.

.

.

.

.

. 14

Case

Sensitivity

and

Special

Characters

in

Identifiers

.

.

.

.

.

.

.

.

.

.

.

.

.

. 14

Predefined

Identifiers

.

.

.

.

.

.

.

.

.

. 14

Keywords

.

.

.

.

.

.

.

.

.

.

.

.

.

. 15

Literals

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 16

Boolean

Literals

.

.

.

.

.

.

.

.

.

.

.

. 16

Integer

Literals

.

.

.

.

.

.

.

.

.

.

.

. 16

Floating-Point

Literals

.

.

.

.

.

.

.

.

.

. 18

Complex

Literals

.

.

.

.

.

.

.

.

.

.

. 20

Character

Literals

.

.

.

.

.

.

.

.

.

.

. 21

String

Literals

.

.

.

.

.

.

.

.

.

.

.

. 22

Compound

Literals

.

.

.

.

.

.

.

.

.

.

. 23

Chapter

3.

Declarations

.

.

.

.

.

.

. 25

Declaration

Overview

.

.

.

.

.

.

.

.

.

.

. 25

Variable

Attributes

.

.

.

.

.

.

.

.

.

.

. 26

The

__align

Specifier

.

.

.

.

.

.

.

.

.

. 28

Tentative

Definitions

.

.

.

.

.

.

.

.

.

. 29

Objects

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 29

Storage

Class

Specifiers

.

.

.

.

.

.

.

.

.

. 29

auto

Storage

Class

Specifier

.

.

.

.

.

.

.

. 30

extern

Storage

Class

Specifier

.

.

.

.

.

.

. 31

register

Storage

Class

Specifier

.

.

.

.

.

.

. 32

static

Storage

Class

Specifier

.

.

.

.

.

.

.

. 33

typedef

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 34

Type

Specifiers

.

.

.

.

.

.

.

.

.

.

.

.

. 35

Type

Names

.

.

.

.

.

.

.

.

.

.

.

.

. 36

Type

Attributes

.

.

.

.

.

.

.

.

.

.

.

. 36

Compatible

Types

.

.

.

.

.

.

.

.

.

.

. 39

Simple

Type

Specifiers

.

.

.

.

.

.

.

.

.

. 40

Compound

Types

.

.

.

.

.

.

.

.

.

.

. 44

Complex

Types

.

.

.

.

.

.

.

.

.

.

.

. 60

Type

Qualifiers

.

.

.

.

.

.

.

.

.

.

.

.

. 61

The

const

Type

Qualifier

.

.

.

.

.

.

.

.

. 62

The

volatile

Type

Qualifier

.

.

.

.

.

.

.

. 63

The

restrict

Type

Qualifier

.

.

.

.

.

.

.

. 63

The

asm

Declaration

.

.

.

.

.

.

.

.

.

.

. 64

Incomplete

Types

.

.

.

.

.

.

.

.

.

.

.

. 66

Chapter

4.

Declarators

.

.

.

.

.

.

.

. 67

Initializers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 68

Pointers

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 69

Declaring

Pointers

.

.

.

.

.

.

.

.

.

.

. 69

Assigning

Pointers

.

.

.

.

.

.

.

.

.

.

. 69

Initializing

Pointers

.

.

.

.

.

.

.

.

.

.

. 70

Using

Pointers

.

.

.

.

.

.

.

.

.

.

.

. 71

Pointer

Arithmetic

.

.

.

.

.

.

.

.

.

.

. 71

Arrays

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 73

Declaring

Arrays

.

.

.

.

.

.

.

.

.

.

. 74

Initializing

Arrays

.

.

.

.

.

.

.

.

.

.

. 76

Function

Specifiers

.

.

.

.

.

.

.

.

.

.

.

. 81

Chapter

5.

Expressions

and

Operators

83

Operator

Precedence

and

Associativity

.

.

.

.

. 84

Lvalues

and

Rvalues

.

.

.

.

.

.

.

.

.

.

. 86

Primary

Expressions

.

.

.

.

.

.

.

.

.

.

. 88

Integer

Constant

Expressions

.

.

.

.

.

.

. 88

Parenthesized

Expressions

(

)

.

.

.

.

.

.

. 89

Postfix

Expressions

.

.

.

.

.

.

.

.

.

.

.

. 90

Function

Call

Operator

(

)

.

.

.

.

.

.

.

. 90

Array

Subscripting

Operator

[

]

.

.

.

.

.

. 92

Dot

Operator

.

.

.

.

.

.

.

.

.

.

.

.

. 93

Arrow

Operator

−>

.

.

.

.

.

.

.

.

.

. 93

Unary

Expressions

.

.

.

.

.

.

.

.

.

.

.

. 94

Increment

++

.

.

.

.

.

.

.

.

.

.

.

.

. 94

Decrement

−−

.

.

.

.

.

.

.

.

.

.

.

. 95

Unary

Plus

+

.

.

.

.

.

.

.

.

.

.

.

.

. 95

Unary

Minus

−

.

.

.

.

.

.

.

.

.

.

.

. 95

Logical

Negation

!

.

.

.

.

.

.

.

.

.

.

. 96

Bitwise

Negation

~

.

.

.

.

.

.

.

.

.

.

. 96

Address

&

.

.

.

.

.

.

.

.

.

.

.

.

.

. 96

Indirection

*

.

.

.

.

.

.

.

.

.

.

.

.

. 97

alignof

Operator

.

.

.

.

.

.

.

.

.

.

.

. 97

sizeof

Operator

.

.

.

.

.

.

.

.

.

.

.

. 98

typeof

Operator

.

.

.

.

.

.

.

.

.

.

.

. 99

Label

Value

Operator

&&

.

.

.

.

.

.

.

. 100

Cast

Expressions

.

.

.

.

.

.

.

.

.

.

.

. 100

Cast

to

a

Union

Type

.

.

.

.

.

.

.

.

.

. 100

Binary

Expressions

.

.

.

.

.

.

.

.

.

.

. 101

Multiplication

*

.

.

.

.

.

.

.

.

.

.

.

. 102

Division

/

.

.

.

.

.

.

.

.

.

.

.

.

. 102

©

Copyright

IBM

Corp.

1998,

2004

iii

Remainder

%

.

.

.

.

.

.

.

.

.

.

.

. 102

Addition

+

.

.

.

.

.

.

.

.

.

.

.

.

. 102

Subtraction

−

.

.

.

.

.

.

.

.

.

.

.

. 103

Bitwise

Left

and

Right

Shift

<<

>>

.

.

.

.

. 103

Relational

<

>

<=

>=

.

.

.

.

.

.

.

.

.

. 104

Equality

==

!=

.

.

.

.

.

.

.

.

.

.

.

. 105

Bitwise

AND

&

.

.

.

.

.

.

.

.

.

.

.

. 106

Bitwise

Exclusive

OR

^

.

.

.

.

.

.

.

.

. 106

Bitwise

Inclusive

OR

|

.

.

.

.

.

.

.

.

. 107

Logical

AND

&&

.

.

.

.

.

.

.

.

.

.

. 107

Logical

OR

||

.

.

.

.

.

.

.

.

.

.

.

. 108

Conditional

Expressions

.

.

.

.

.

.

.

.

.

. 109

Type

of

Conditional

C

Expressions

.

.

.

.

. 109

Examples

of

Conditional

Expressions

.

.

.

. 110

Assignment

Expressions

.

.

.

.

.

.

.

.

.

. 111

Simple

Assignment

=

.

.

.

.

.

.

.

.

.

. 111

Compound

Assignment

.

.

.

.

.

.

.

.

. 111

Comma

Expressions

.

.

.

.

.

.

.

.

.

.

. 112

Chapter

6.

Implicit

Type

Conversions

115

Integral

and

Floating-Point

Promotions

.

.

.

.

. 115

Standard

Type

Conversions

.

.

.

.

.

.

.

.

. 116

Lvalue-to-Rvalue

Conversions

.

.

.

.

.

.

. 116

Boolean

Conversions

.

.

.

.

.

.

.

.

.

. 116

Integral

Conversions

.

.

.

.

.

.

.

.

.

. 116

Floating-Point

Conversions

.

.

.

.

.

.

.

. 117

Pointer

Conversions

.

.

.

.

.

.

.

.

.

. 117

Function

Argument

Conversions

.

.

.

.

.

. 118

Other

Conversions

.

.

.

.

.

.

.

.

.

.

. 119

Arithmetic

Conversions

.

.

.

.

.

.

.

.

.

. 119

Chapter

7.

Functions

.

.

.

.

.

.

.

. 121

Function

Declarations

.

.

.

.

.

.

.

.

.

. 121

Function

Attributes

.

.

.

.

.

.

.

.

.

. 123

Examples

of

Function

Declarations

.

.

.

.

. 127

Function

Definitions

.

.

.

.

.

.

.

.

.

.

. 128

Ellipsis

and

void

.

.

.

.

.

.

.

.

.

.

. 130

Examples

of

Function

Definitions

.

.

.

.

.

. 131

The

main()

Function

.

.

.

.

.

.

.

.

.

.

. 132

Arguments

to

main

.

.

.

.

.

.

.

.

.

. 132

Example

of

Arguments

to

main

.

.

.

.

.

. 133

Calling

Functions

and

Passing

Arguments

.

.

.

. 133

Passing

Arguments

by

Value

.

.

.

.

.

.

. 134

Passing

Arguments

by

Reference

.

.

.

.

.

. 135

Function

Return

Values

.

.

.

.

.

.

.

.

.

. 136

Pointers

to

Functions

.

.

.

.

.

.

.

.

.

.

. 136

Inline

Functions

.

.

.

.

.

.

.

.

.

.

.

. 137

Nested

Functions

.

.

.

.

.

.

.

.

.

.

.

. 138

Chapter

8.

Statements

.

.

.

.

.

.

. 141

Labels

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 141

Locally

Declared

Labels

.

.

.

.

.

.

.

.

. 142

Labels

as

Values

.

.

.

.

.

.

.

.

.

.

. 142

Expression

Statements

.

.

.

.

.

.

.

.

.

. 143

Block

Statement

.

.

.

.

.

.

.

.

.

.

.

. 143

if

Statement

.

.

.

.

.

.

.

.

.

.

.

.

.

. 144

switch

Statement

.

.

.

.

.

.

.

.

.

.

.

. 146

while

Statement

.

.

.

.

.

.

.

.

.

.

.

. 149

do

Statement

.

.

.

.

.

.

.

.

.

.

.

.

. 150

for

Statement

.

.

.

.

.

.

.

.

.

.

.

.

. 151

break

Statement

.

.

.

.

.

.

.

.

.

.

.

. 153

continue

Statement

.

.

.

.

.

.

.

.

.

.

. 153

return

Statement

.

.

.

.

.

.

.

.

.

.

.

. 155

Value

of

a

return

Expression

and

Function

Value

155

goto

Statement

.

.

.

.

.

.

.

.

.

.

.

.

. 156

Computed

goto

.

.

.

.

.

.

.

.

.

.

.

. 157

Null

Statement

.

.

.

.

.

.

.

.

.

.

.

.

. 157

Chapter

9.

Preprocessor

Directives

159

Preprocessor

Overview

.

.

.

.

.

.

.

.

.

. 159

Preprocessor

Directive

Format

.

.

.

.

.

.

.

. 160

Macro

Definition

and

Expansion

(#define)

.

.

.

. 160

Object-Like

Macros

.

.

.

.

.

.

.

.

.

. 161

Function-Like

Macros

.

.

.

.

.

.

.

.

. 161

Scope

of

Macro

Names

(#undef)

.

.

.

.

.

.

. 165

#

Operator

.

.

.

.

.

.

.

.

.

.

.

.

.

. 165

Macro

Concatenation

with

the

##

Operator

.

.

. 166

Preprocessor

Error

Directive

(#error)

.

.

.

.

.

. 167

Preprocessor

Warning

Directive

(#warning)

.

. 167

File

Inclusion

(#include)

.

.

.

.

.

.

.

.

.

. 168

Specialized

File

Inclusion

(#include_next)

.

.

.

. 169

ISO

Standard

Predefined

Macro

Names

.

.

.

. 169

Conditional

Compilation

Directives

.

.

.

.

.

. 170

#if,

#elif

.

.

.

.

.

.

.

.

.

.

.

.

.

. 171

#ifdef

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

#ifndef

.

.

.

.

.

.

.

.

.

.

.

.

.

. 172

#else

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

#endif

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 173

Line

Control

(#line)

.

.

.

.

.

.

.

.

.

.

. 174

Null

Directive

(#)

.

.

.

.

.

.

.

.

.

.

.

. 175

Pragma

Directives

(#pragma)

.

.

.

.

.

.

.

. 175

Standard

Pragmas

.

.

.

.

.

.

.

.

.

.

. 176

The

_Pragma

Operator

.

.

.

.

.

.

.

.

. 176

Appendix

A.

The

IBM

C

Language

Extensions

.

.

.

.

.

.

.

.

.

.

.

. 177

Orthogonal

Extensions

.

.

.

.

.

.

.

.

.

. 177

Existing

IBM

C

Extensions

with

Individual

Option

Controls

.

.

.

.

.

.

.

.

.

.

. 177

IBM

C

Extensions:

C99

Features

as

Extensions

to

C89

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 177

IBM

C

Extensions

Related

to

GNU

C

.

.

.

. 179

Non-Orthogonal

Extensions

.

.

.

.

.

.

.

. 179

Existing

IBM

C

Extensions

with

Individual

Option

Controls

.

.

.

.

.

.

.

.

.

.

. 180

IBM

C

Extensions:

C99

Features

as

Extensions

to

C89

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 180

IBM

C

Extensions

Related

to

GNU

C

.

.

.

. 180

Appendix

B.

Predefined

Macros

Related

to

Language

Features

.

.

.

. 181

Notices

.

.

.

.

.

.

.

.

.

.

.

.

.

. 183

Programming

Interface

Information

.

.

.

.

.

. 185

Trademarks

and

Service

Marks

.

.

.

.

.

.

. 185

Industry

Standards

.

.

.

.

.

.

.

.

.

.

. 185

Index

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. 187

iv

C

Language

Reference

About

This

Reference

The

C

Language

Reference

describes

the

syntax,

semantics,

and

IBM

implementation

of

the

C

programming

language.

Syntax

and

semantics

constitute

a

complete

specification

of

a

programming

language,

but

conforming

implementations

of

a

language

specification

can

differ

because

of

language

extensions.

The

IBM

implementation

of

C

attests

to

the

organic

nature

of

programming

languages,

reflecting

pragmatic

considerations

and

advances

in

programming

techniques.

The

language

extensions

to

C

reflect

the

changing

needs

of

modern

programming

environments.

The

aims

of

this

reference

are

to

provide

a

description

of

the

C

language

and

to

promote

a

programming

style

that

emphasizes

portability.

The

expression

Standard

C

is

a

specific

term

for

the

current

formal

definition

of

the

C

language,

preprocessor,

and

run-time

library.

This

reference

describes

an

implementation

that

is

consistent

with

Standard

C.

The

compiler

also

supports

previous

language

levels.

To

avoid

possible

ambiguity

and

confusion

with

K&R

C,

this

reference

uses

the

term

Classic

C

to

refer

to

the

C

language

plus

the

generally

accepted

extensions

produced

by

Brian

Kernighan

and

Dennis

Ritchie

(K&R

C)

that

were

in

use

prior

to

the

ISO

standardization

of

C.

The

focus

of

this

book

is

on

the

fundamentals

and

intricacies

of

the

C

language.

The

availability

of

a

particular

language

feature

at

a

particular

language

level

is

controlled

by

compiler

options.

Comprehensive

coverage

of

the

possibilities

offered

by

the

compiler

options

is

available

in

XL

C

Compiler

Reference.

The

C

language

described

in

this

reference

is

based

on

the

following

standards:

v

The

C

language

described

in

Programming

languages

–

C

(ISO/IEC

9899:1990),

henceforth

referred

to

as

C89.

This

was

the

first

ISO

C

standard.

v

The

C

language

described

in

Programming

languages

–

C

(ISO/IEC

9899:1999),

henceforth

referred

to

as

C99.

This

is

an

update

to

the

C89

standard.

The

C

language

described

in

this

reference

is

consistent

with

C99

and

documents

the

features

supported

by

XL

C.

The

compiler

supports

all

language

features

specified

in

Standard.

Note

that

the

Standard

also

specifies

features

in

the

run-time

library.

These

features

may

not

be

supported

in

the

current

run-time

library

and

operating

environment.

The

depth

of

coverage

assumes

some

previous

experience

with

C

or

another

programming

language.

The

intent

is

to

present

the

syntax

and

semantics

of

each

language

implementation

to

help

you

write

good

programs.

The

compiler

does

not

enforce

certain

conventions

of

programming

style,

even

though

they

lead

to

well-ordered

programs.

A

program

that

conforms

strictly

to

its

language

specification

will

have

maximum

portability

among

different

environments.

In

theory,

a

program

that

compiles

correctly

with

one

standards-conforming

compiler

will

compile

and

execute

correctly

under

all

other

conforming

compilers,

insofaras

hardware

differences

permit.

A

program

that

correctly

exploits

the

extensions

to

the

language

that

are

provided

by

the

language

implementation

can

improve

the

efficiency

of

its

object

code.

©

Copyright

IBM

Corp.

1998,

2004

v

The

IBM

Language

Extensions

Based

on

various

language

standards,

this

release

contains

language

extensions

that

enhance

usability

and

facilitate

porting

programs

to

different

platforms.

We

refer

to

the

following

language

specifications

as

″base

language

levels″

in

order

to

introduce

the

notion

of

an

extension

to

a

base.

v

C99

v

C89

In

addition,

we

also

use

Classic

C

to

refer

to

the

de

facto

K&R

industry

standard,

which

was

commonly

used

by

C

implementations

before

C89

was

standardized.

An

orthogonal

extension

is

a

feature

that

is

added

on

top

of

a

base

without

altering

the

behavior

of

the

existing

language

features.

A

valid

program

conforming

to

a

base

level

will

continue

to

compile

and

run

correctly

with

such

extensions.

The

program

will

still

be

valid,

and

its

behavior

will

remain

unchanged

in

the

presence

of

the

orthogonal

extensions.

Such

an

extension

is

therefore

consistent

with

the

corresponding

base

standard

level.

Invalid

programs

may

behave

differently

at

execution

time

and

in

the

diagnostics

issued

by

the

compiler.

On

the

other

hand,

a

non-orthogonal

extension

is

one

that

can

change

the

semantics

of

existing

constructs

or

can

introduce

syntax

conflicting

with

the

base.

A

valid

program

conforming

to

the

base

is

not

guaranteed

to

compile

and

run

correctly

with

the

non-orthogonal

extensions.

Because

of

this,

individual

compiler

options

are

provided

to

enable

them.

The

language

levels

for

C99

and

C89

specify

strict

conformance.

Classic

C

generally

follows

the

de

facto

K&R

industry

standard.

These

language

levels

can

be

selected

using

the

-qlanglvl

compiler

option.

Extensions

to

the

standard

levels

can

also

be

specified

using

this

option.

For

example,

-qlanglvl=stdc99

specifies

the

Standard

C99,

and

-qlanglvl=extc99

specifies

C99

plus

the

orthogonal

extensions.

Refer

to

XL

C

Compiler

Reference

for

details

about

-qlanglvl

and

its

suboptions.

Any

previously

existing

options

continue

to

be

supported,

such

as

the

compiler

options

digraph,

UCS

character,

long

long,

and

dollar,

which

are

orthogonal

extensions

to

C89.

Features

Related

to

GNU

C

Certain

language

extensions

that

correspond

to

GNU

C

features

are

implemented

to

facilitate

portability.

These

include

both

orthogonal

and

non-orthogonal

extensions

to

C89

and

C99.

They

are

controlled

by

the

-qlanglvl

compiler

option,

as

described

in

the

previous

section.

An

example

of

an

orthogonal

extension

related

to

GNU

C

is

specifying

the

noreturn

function

attribute

in

a

function

declaration

and

definition.

The

compiler

is

informed

that

the

function

never

returns,

which

may

result

in

better

performance,

but

any

conforming

program

will

not

be

affected

by

the

feature.

The

semantics

of

the

noreturn

function

attribute

are

deemed

orthogonal.

An

example

of

a

non-orthogonal

extension

is

the

inline

keyword.

It

is

non-orthogonal

because

its

current

GNU

C

semantics

are

different

from

those

of

C99.

vi

C

Language

Reference

Highlighting

Conventions

Bold

Identifies

commands,

keywords,

and

other

items

whose

names

are

predefined

by

the

system.

Italics

Identify

parameters

whose

actual

names

or

values

are

to

be

supplied

by

the

programmer.

Italics

are

also

used

for

the

first

mention

of

new

terms.

Example

Identifies

examples

of

specific

data

values,

examples

of

text

similar

to

what

you

might

see

displayed,

examples

of

portions

of

program

code,

messages

from

the

system,

or

information

that

you

should

actually

type.

Examples

are

intended

to

be

instructional

and

do

not

attempt

to

minimize

run

time,

conserve

storage,

or

check

for

errors.

The

examples

do

not

demonstrate

all

of

the

possible

uses

of

language

constructs.

Some

examples

are

only

code

fragments

and

will

not

compile

without

additional

code.

How

to

Read

the

Syntax

Diagrams

v

Read

the

syntax

diagrams

from

left

to

right,

from

top

to

bottom,

following

the

path

of

the

line.

The

��───

symbol

indicates

the

beginning

of

a

command,

directive,

or

statement.

The

───�

symbol

indicates

that

the

command,

directive,

or

statement

syntax

is

continued

on

the

next

line.

The

�───

symbol

indicates

that

a

command,

directive,

or

statement

is

continued

from

the

previous

line.

The

───��

symbol

indicates

the

end

of

a

command,

directive,

or

statement.

Diagrams

of

syntactical

units

other

than

complete

commands,

directives,

or

statements

start

with

the

�───

symbol

and

end

with

the

───�

symbol.

Note:

In

the

following

diagrams,

statement

represents

a

C

command,

directive,

or

statement.

v

Required

items

appear

on

the

horizontal

line

(the

main

path).

��

statement

required_item

��

v

Optional

items

appear

below

the

main

path.

��

statement

optional_item

��

v

If

you

can

choose

from

two

or

more

items,

they

appear

vertically,

in

a

stack.

If

you

must

choose

one

of

the

items,

one

item

of

the

stack

appears

on

the

main

path.

��

statement

required_choice1

required_choice2

��

If

choosing

one

of

the

items

is

optional,

the

entire

stack

appears

below

the

main

path.

Highlighting

About

This

Reference

vii

��

statement

optional_choice1

optional_choice2

��

The

item

that

is

the

default

appears

above

the

main

path.

��

statement

default_item

alternate_item

��

v

An

arrow

returning

to

the

left

above

the

main

line

indicates

an

item

that

can

be

repeated.

��

statement

�

repeatable_item

��

A

repeat

arrow

above

a

stack

indicates

that

you

can

make

more

than

one

choice

from

the

stacked

items,

or

repeat

a

single

choice.

v

Keywords

appear

in

nonitalic

letters

and

should

be

entered

exactly

as

shown

(for

example,

extern).

Variables

appear

in

italicized

lowercase

letters

(for

example,

identifier).

They

represent

user-supplied

names

or

values.

v

If

punctuation

marks,

parentheses,

arithmetic

operators,

or

other

such

symbols

are

shown,

you

must

enter

them

as

part

of

the

syntax.

The

following

syntax

diagram

example

shows

the

syntax

for

the

#pragma

comment

directive.

See

“Pragma

Directives

(#pragma)”

on

page

175

for

information

on

the

#pragma

directive.

�1�

This

is

the

start

of

the

syntax

diagram.

�2�

The

symbol

#

must

appear

first.

�3�

The

keyword

pragma

must

appear

following

the

#

symbol.

�4�

The

name

of

the

pragma

comment

must

appear

following

the

keyword

pragma.

�5�

An

opening

parenthesis

must

be

present.

�6�

The

comment

type

must

be

entered

only

as

one

of

the

types

indicated:

compiler,

date,

timestamp,

copyright,

or

user.

�7�

A

comma

must

appear

between

the

comment

type

copyright

or

user,

and

an

optional

character

string.

�8�

A

character

string

must

follow

the

comma.

The

character

string

must

be

enclosed

in

double

quotation

marks.

�9�

A

closing

parenthesis

is

required.

�1�

�2�

�3�

�4�

�5�

�6�

�9�

�10�

��─#──pragma──comment──(─┬─────compiler────────────────────────┬──)─��

│

│

├─────date────────────────────────────┤

│

│

├─────timestamp───────────────────────┤

│

│

└──┬──copyright──┬──┬─────────────────┤

│

│

│

│

└──user───────┘

└──,─"characters"─┘

�7�

�8�

Reading

the

Syntax

Diagrams

viii

C

Language

Reference

�10�

This

is

the

end

of

the

syntax

diagram.

The

following

examples

of

the

#pragma

comment

directive

are

syntactically

correct

according

to

the

diagram

shown

above:

#pragma

comment(date)

#pragma

comment(user)

#pragma

comment(copyright,"This

text

will

appear

in

the

module")

Reading

the

Syntax

Diagrams

About

This

Reference

ix

Reading

the

Syntax

Diagrams

x

C

Language

Reference

Chapter

1.

Scope

and

Linkage

Scope

is

the

largest

region

of

program

text

in

which

a

name

can

potentially

be

used

without

qualification

to

refer

to

an

entity;

that

is,

the

largest

region

in

which

the

name

potentially

is

valid.

Broadly

speaking,

scope

is

the

general

context

used

to

differentiate

the

meanings

of

entity

names.

The

rules

for

scope

combined

with

those

for

name

resolution

enable

the

compiler

to

determine

whether

a

reference

to

an

identifier

is

legal

at

a

given

point

in

a

file.

The

scope

of

a

declaration

and

the

visibility

of

an

identifier

are

related

but

distinct

concepts.

Scope

is

the

mechanism

by

which

it

is

possible

to

limit

the

visibility

of

declarations

in

a

program.

The

visibility

of

an

identifier

is

that

region

of

program

text

from

which

the

object

associated

with

the

identifier

can

be

legally

accessed.

Scope

can

exceed

visibility,

but

visibility

cannot

exceed

scope.

Scope

exceeds

visibility

when

a

duplicate

identifier

is

used

in

an

inner

declarative

region,

thereby

hiding

the

object

declared

in

the

outer

declarative

region.

The

original

identifier

cannot

be

used

to

access

the

first

object

until

the

scope

of

the

duplicate

identifier

(the

lifetime

of

the

second

object)

has

ended.

Thus,

the

scope

of

an

identifier

is

interrelated

with

the

storage

duration

of

the

identified

object,

which

is

the

length

of

time

that

an

object

remains

in

an

identified

region

of

storage.

The

lifetime

of

the

object

is

influenced

by

its

storage

duration,

which

in

turn

was

affected

by

the

scope

of

the

object

identifier.

Linkage

refers

to

the

use

or

availability

of

a

name

across

multiple

translation

units

or

within

a

single

translation

unit.

The

term

translation

unit

refers

to

a

source

code

file

plus

all

the

header

and

other

source

files

that

are

included

after

preprocessing

with

the

#include

directive,

minus

any

source

lines

skipped

because

of

conditional

preprocessing

directives.

Linkage

allows

the

correct

association

of

each

instance

of

an

identifier

with

one

particular

object

or

function.

Scope

and

linkage

are

distinguishable

in

that

scope

is

for

the

benefit

of

the

compiler,

whereas

linkage

is

for

the

benefit

of

the

linker.

During

the

translation

of

a

source

file

to

object

code,

the

compiler

keeps

track

of

the

identifiers

that

have

external

linkage

and

eventually

stores

them

in

a

table

within

the

object

file.

The

linker

is

thereby

able

to

determine

which

names

have

external

linkage,

but

is

unaware

of

those

with

internal

or

no

linkage.

Related

References

v

“Program

Linkage”

on

page

4

Scope

The

scope

of

an

identifier

is

the

largest

region

of

the

program

text

in

which

the

identifier

can

potentially

be

used

to

refer

to

its

object.

The

meaning

of

the

identifier

depends

upon

the

context

in

which

the

identifier

is

used.

Scope

is

the

general

context

used

to

distinguish

the

meanings

of

names.

The

scope

of

an

identifier

is

possibly

noncontiguous.

One

of

the

ways

that

breakage

occurs

is

when

the

same

name

is

reused

to

declare

a

different

entity,

thereby

creating

a

contained

declarative

region

(inner)

and

a

containing

declarative

©

Copyright

IBM

Corp.

1998,

2004

1

region

(outer).

Thus,

point

of

declaration

is

a

factor

affecting

scope.

Exploiting

the

possibility

of

a

noncontiguous

scope

is

the

basis

for

the

technique

called

information

hiding.

The

concept

of

scope

that

exists

in

C

was

expanded

and

refined

in

C++.

The

following

table

shows

the

kinds

of

scopes

and

the

minor

differences

in

terminology.

Differences

in

terminology

between

C

and

C++

2000C

2000C++

block

local

function

function

function

prototype

function

prototype

file

(global)

global

namespace

namespace

class

In

all

declarations,

the

identifier

is

in

scope

before

the

initializer.

The

following

example

demonstrates

this:

int

x;

void

f()

{

int

x

=

x;

}

The

x

declared

in

function

f()

has

local

scope,

not

global

namespace

scope.

Block

Scope

A

name

has

local

scope

or

block

scope

if

it

is

declared

in

a

block.

A

name

with

local

scope

can

be

used

in

that

block

and

in

blocks

enclosed

within

that

block,

but

the

name

must

be

declared

before

it

is

used.

When

the

block

is

exited,

the

names

declared

in

the

block

are

no

longer

available.

Parameter

names

for

a

function

have

the

scope

of

the

outermost

block

of

that

function.

Also

if

the

function

is

declared

and

not

defined,

these

parameter

names

have

function

prototype

scope.

When

one

block

is

nested

inside

another,

the

variables

from

the

outer

block

are

usually

visible

in

the

nested

block.

However,

if

the

declaration

of

a

variable

in

a

nested

block

has

the

same

name

as

a

variable

that

is

declared

in

an

enclosing

block,

the

declaration

in

the

nested

block

hides

the

variable

that

was

declared

in

the

enclosing

block.

The

original

declaration

is

restored

when

program

control

returns

to

the

outer

block.

This

is

called

block

visibility.

Name

resolution

in

a

local

scope

begins

in

the

immediate

scope

in

which

the

name

is

used

and

continues

outward

with

each

enclosing

scope.

The

order

in

which

scopes

are

searched

during

name

resolution

causes

the

phenomenon

of

information

hiding.

A

declaration

in

an

enclosing

scope

is

hidden

by

a

declaration

of

the

same

identifier

in

a

nested

scope.

Related

References

v

“Block

Statement”

on

page

143

Scope

2

C

Language

Reference

Function

Scope

The

only

type

of

identifier

with

function

scope

is

a

label

name.

A

label

is

implicitly

declared

by

its

appearance

in

the

program

text

and

is

visible

throughout

the

function

that

declares

it.

A

label

can

be

used

in

a

goto

statement

before

the

actual

label

is

seen.

Related

References

v

“Labels”

on

page

141

Function

Prototype

Scope

In

a

function

declaration

(also

called

a

function

prototype)

or

in

any

function

declarator—except

the

declarator

of

a

function

definition—parameter

names

have

function

prototype

scope.

Function

prototype

scope

terminates

at

the

end

of

the

nearest

enclosing

function

declarator.

Related

References

v

“Function

Declarations”

on

page

121

Global

Scope

A

name

has

global

scope

if

the

identifier’s

declaration

appears

outside

of

any

block.

A

name

with

global

scope

and

internal

linkage

is

visible

from

the

point

where

it

is

declared

to

the

end

of

the

translation

unit.

A

name

with

global

scope

is

also

accessible

for

the

initialization

of

global

variables.

If

that

name

is

declared

extern,

it

is

also

visible

at

link

time

in

all

object

files

being

linked.

Related

References

v

“Internal

Linkage”

on

page

4

Name

Spaces

of

Identifiers

Name

spaces

are

the

various

syntactic

contexts

within

which

an

identifier

can

be

used.

Within

the

same

context

and

the

same

scope,

an

identifier

must

uniquely

identify

an

entity.

The

compiler

sets

up

name

spaces

to

distinguish

among

identifiers

referring

to

different

kinds

of

entities.

Identical

identifiers

in

different

name

spaces

do

not

interfere

with

each

other,

even

if

they

are

in

the

same

scope.

The

same

identifier

can

declare

different

objects

as

long

as

each

identifier

is

unique

within

its

name

space.

The

syntactic

context

of

an

identifier

within

a

program

lets

the

compiler

resolve

its

name

space

without

ambiguity.

Within

each

of

the

following

four

name

spaces,

the

identifiers

must

be

unique.

v

Tags

of

these

types

must

be

unique

within

a

single

scope:

–

Enumerations

–

Structures

and

unions
v

Members

of

structures,

unions,

and

classes

must

be

unique

within

a

single

structure,

union,

or

class

type.

v

Statement

labels

have

function

scope

and

must

be

unique

within

a

function.

v

All

other

ordinary

identifiers

must

be

unique

within

a

single

scope:

–

C

function

names

–

Variable

names

–

Names

of

function

parameters

Scope

Chapter

1.

Scope

and

Linkage

3

–

Enumeration

constants

–

typedef

names.

You

can

redefine

identifiers

in

the

same

name

space

but

within

enclosed

program

blocks.

Structure

tags,

structure

members,

variable

names,

and

statement

labels

are

in

four

different

name

spaces.

No

name

conflict

occurs

among

the

items

named

student

in

the

following

example:

int

get_item()

{

struct

student

/*

structure

tag

*/

{

char

name[20];

/*

this

structure

member

may

not

be

named

student

*/

int

section;

int

id;

}

sam;

/*

this

structure

variable

should

not

be

named

student

*/

goto

student;

student:;

/*

null

statement

label

*/

return

0;

student

fred;

/*

legal

struct

declaration

in

C++

*/

}

The

compiler

interprets

each

occurrence

of

student

by

its

context

in

the

program.

For

example,

when

student

appears

after

the

keyword

struct,

it

is

a

structure

tag.

The

name

student

may

not

be

used

for

a

structure

member

of

struct

student.

When

student

appears

after

the

goto

statement,

the

compiler

passes

control

to

the

null

statement

label.

In

other

contexts,

the

identifier

student

refers

to

the

structure

variable.

Program

Linkage

Linkage

determines

whether

identifiers

that

have

identical

names

refer

to

the

same

object,

function,

or

other

entity,

even

if

those

identifiers

appear

in

different

translation

units.

The

linkage

of

an

identifier

depends

on

how

it

was

declared.

There

are

three

types

of

linkages:

external,

internal,

and

no

linkage.

v

Identifiers

with

external

linkage

can

be

seen

(and

refered

to)

in

other

translation

units.

v

Identifiers

with

internal

linkage

can

only

be

seen

within

the

translation

unit.

v

Identifiers

with

no

linkage

can

only

be

seen

in

the

scope

in

which

they

are

defined.

Linkage

does

not

affect

scoping,

and

normal

name

lookup

considerations

apply.

Internal

Linkage

The

following

kinds

of

identifiers

have

internal

linkage:

v

Objects,

references,

or

functions

explicitly

declared

static.

v

Objects

or

references

declared

in

global

scope

with

the

specifier

const

and

neither

explicitly

declared

extern,

nor

previously

declared

to

have

external

linkage.

v

Data

members

of

an

anonymous

union.
v

Objects,

references,

or

functions

explicitly

declared

static.

v

Objects

declared

in

global

scope

with

the

specifier

const

and

neither

explicitly

declared

extern,

nor

previously

declared

to

have

external

linkage.

v

Data

members

of

an

anonymous

union.

Name

Spaces

of

Identifiers

4

C

Language

Reference

A

function

declared

inside

a

block

will

usually

have

external

linkage.

An

object

declared

inside

a

block

will

usually

have

external

linkage

if

it

is

specified

extern.

If

a

variable

that

has

static

storage

is

defined

outside

a

function,

the

variable

has

internal

linkage

and

is

available

from

the

point

where

it

is

defined

to

the

end

of

the

current

translation

unit.

If

the

declaration

of

an

identifier

has

the

keyword

extern

and

if

a

previous

declaration

of

the

identifier

is

visible

at

namespace

or

global

scope,

the

identifier

has

the

same

linkage

as

the

first

declaration.

External

Linkage

In

global

scope,

identifiers

for

the

following

kinds

of

entities

declared

without

the

static

storage

class

specifier

have

external

linkage:

v

An

object.

v

A

function.

If

an

identifier

in

C

is

declared

with

the

extern

keyword

and

if

a

previous

declaration

of

an

object

or

function

with

the

same

identifier

is

visible,

the

identifier

has

the

same

linkage

as

the

first

declaration.

For

example,

a

variable

or

function

that

is

first

declared

with

the

keyword

static

and

later

declared

with

the

keyword

extern

has

internal

linkage.

However,

a

variable

or

function

that

has

no

linkage

and

was

later

declared

with

a

linkage

specifier

will

have

the

linkage

that

was

expressly

specified.

If

the

identifier

for

a

class

has

external

linkage,

then,

in

the

implementation

of

that

class,

the

identifiers

for

the

following

will

also

have

external

linkage:

v

A

member

function.

v

A

static

data

member.

v

A

class

of

class

scope.

v

An

enumeration

of

class

scope.

No

Linkage

The

following

kinds

of

identifiers

have

no

linkage:

v

Names

that

have

neither

external

or

internal

linkage

v

Names

declared

in

local

scopes

(with

exceptions

like

certain

entities

declared

with

the

extern

keyword)

v

Identifiers

that

do

not

represent

an

object

or

a

function,

including

labels,

enumerators,

typedef

names

that

refer

to

entities

with

no

linkage,

type

names,

function

parameters,

and

template

names

You

cannot

use

a

name

with

no

linkage

to

declare

an

entity

with

linkage.

For

example,

you

cannot

use

the

name

of

a

class

or

enumeration

or

a

typedef

name

referring

to

an

entity

with

no

linkage

to

declare

an

entity

with

linkage.

The

following

example

demonstrates

this:

int

main()

{

struct

A

{

};

//

extern

A

a1;

typedef

A

myA;

//

extern

myA

a2;

}

The

compiler

will

not

allow

the

declaration

of

a1

with

external

linkage.

Class

A

has

no

linkage.

The

compiler

will

not

allow

the

declaration

of

a2

with

external

linkage.

The

typedef

name

a2

has

no

linkage

because

A

has

no

linkage.

Program

Linkage

Chapter

1.

Scope

and

Linkage

5

Program

Linkage

6

C

Language

Reference

Chapter

2.

Lexical

Elements

A

lexical

element

refers

to

a

character

or

groupings

of

characters

that

may

legally

appear

in

a

source

file.

This

section

contains

discussions

of

the

basic

lexical

elements

and

conventions

of

the

C

programming

language:

tokens,

character

sets,

comments,

identifiers,

and

literals.

Tokens

Source

code

is

treated

during

preprocessing

and

compilation

as

a

sequence

of

tokens.

A

token

is

the

smallest

independent

unit

of

meaning

in

a

program,

as

defined

by

the

compiler.

There

are

five

different

types

of

tokens:

v

Identifiers

v

Keywords

v

Literals

v

Operators

v

Punctuators

Adjacent

identifiers,

keywords,

and

literals

must

be

separated

with

white

space.

Other

tokens

should

be

separated

by

white

space

to

make

the

source

code

more

readable.

White

space

includes

blanks,

horizontal

and

vertical

tabs,

new

lines,

form

feeds,

and

comments.

Punctuators

A

punctuator

is

a

token

that

has

syntactic

and

semantic

meaning

to

the

compiler,

but

the

exact

significance

depends

on

the

context.

A

punctuator

can

also

be

a

token

that

is

used

in

the

syntax

of

the

preprocessor.

At

the

C89

language

level,

a

punctuator

does

not

cause

an

action.

For

example,

a

comma

is

a

punctuator

in

an

argument

list

or

in

an

initializer

list,

but

is

an

operator

when

used

within

a

parenthesized

expression.

At

the

C89

language

level,

a

punctuator

can

be

a

character

that

separates

tokens,

such

as:

[

]

(

)

{

}

,

:

;

or

any

of

the

following:

*

=

...

#

C89

restricts

the

use

of

the

number

sign

#

to

preprocessor

directives

only.

At

the

C99

language

level,

the

number

of

legal

tokens

for

a

punctuator

or

preprocessing

token

increases

to

include

the

C

operators.

A

punctuator

that

specifies

an

operation

to

be

performed

is

known

as

an

operator.

In

addition

to

the

C89

punctuators,

C99

defines

the

following

tokens

as

punctuators,

operators,

or

preprocessing

tokens:

.

->

++

--

##

&

+

-

~

!

/

%

<<

>>

!=

<

>

<=

>=

==

^

|

&&

||

?

©

Copyright

IBM

Corp.

1998,

2004

7

*=

/=

%=

+=

-=

<<=

>>=

&=

^=

|=

<:

:>

<%

%>

%:

%:%:

2000C++

In

addition

to

the

C99

preprocessing

tokens,

operators,

and

punctuators,

C++

allows

the

following

tokens

as

punctuators:

::

.*

->*

new

delete

and

and_eq

bitand

bitor

comp

not

not_eq

or

or_eq

xor

xor_eq

Alternative

Tokens

C

provides

alternative

representations

for

some

operators

and

punctuators.

The

following

table

lists

the

operators

and

punctuators

and

their

alternative

representation:

Operator

or

Punctuator

Alternative

Representation

{

<%

}

%>

[

<:

]

:>

#

%:

##

%:%:

&&

and

|

bitor

||

or

^

xor

~

compl

&

bitand

&=

and_eq

|=

or_eq

^=

xor_eq

!

not

!=

not_eq

Source

Program

Character

Set

The

following

lists

the

basic

source

character

set

that

must

be

available

at

both

compile

and

run

time:

v

The

uppercase

and

lowercase

letters

of

the

English

alphabet

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

p

q

r

s

t

u

v

w

x

y

z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

v

The

decimal

digits

0

through

9

0

1

2

3

4

5

6

7

8

9

v

The

following

graphic

characters:

!

"

#

%

&

’

(

)

*

+

,

-

.

/

:

;

<

=

>

?

[

\

]

_

{

}

~

–

The

caret

(^)

character

in

ASCII

(bitwise

exclusive

OR

symbol).

–

The

split

vertical

bar

(¦)

character

in

ASCII.
v

The

space

character

v

The

control

characters

representing

new-line,

horizontal

tab,

vertical

tab,

and

form

feed,

and

end

of

string

(NULL

character)

Tokens

8

C

Language

Reference

Depending

on

the

implementation

and

compiler

option,

other

specialized

identifiers,

such

as

the

dollar

sign

($)

or

characters

in

national

character

sets,

may

be

allowed

to

appear

in

an

identifier.

Escape

Sequences

You

can

represent

any

member

of

the

execution

character

set

by

an

escape

sequence.

They

are

primarily

used

to

put

nonprintable

characters

in

character

and

string

literals.

For

example,

you

can

use

escape

sequences

to

put

such

characters

as

tab,

carriage

return,

and

backspace

into

an

output

stream.

��

\

escape_sequence_character

x

hexadecimal_digits

octal_digits

��

An

escape

sequence

contains

a

backslash

(\)

symbol

followed

by

one

of

the

escape

sequence

characters

or

an

octal

or

hexadecimal

number.

A

hexadecimal

escape

sequence

contains

an

x

followed

by

one

or

more

hexadecimal

digits

(0-9,

A-F,

a-f).

An

octal

escape

sequence

uses

up

to

three

octal

digits

(0-7).

The

value

of

the

hexadecimal

or

octal

number

specifies

the

value

of

the

desired

character

or

wide

character.

Note:

The

line

continuation

sequence

(\

followed

by

a

new-line

character)

is

not

an

escape

sequence.

It

is

used

in

character

strings

to

indicate

that

the

current

line

of

source

code

continues

on

the

next

line.

The

escape

sequences

and

the

characters

they

represent

are:

Escape

Sequence

Character

Represented

\a

Alert

(bell,

alarm)

\b

Backspace

\f

Form

feed

(new

page)

\n

New-line

\r

Carriage

return

\t

Horizontal

tab

\v

Vertical

tab

\’

Single

quotation

mark

\"

Double

quotation

mark

\?

Question

mark

\\

Backslash

The

value

of

an

escape

sequence

represents

the

member

of

the

character

set

used

at

run

time.

Escape

sequences

are

translated

during

preprocessing.

For

example,

on

a

system

using

the

ASCII

character

codes,

the

value

of

the

escape

sequence

\x56

is

the

letter

V.

On

a

system

using

EBCDIC

character

codes,

the

value

of

the

escape

sequence

\xE5

is

the

letter

V.

Use

escape

sequences

only

in

character

constants

or

in

string

literals.

An

error

message

is

issued

if

an

escape

sequence

is

not

recognized.

In

string

and

character

sequences,

when

you

want

the

backslash

to

represent

itself

(rather

than

the

beginning

of

an

escape

sequence),

you

must

use

a

\\

backslash

escape

sequence.

For

example:

cout

<<

"The

escape

sequence

\\n."

<<

endl;

Character

Set

Chapter

2.

Lexical

elements

9

This

statement

results

in

the

following

output:

The

escape

sequence

\n.

The

Unicode

Standard

The

Unicode

Standard

is

the

specification

of

an

encoding

scheme

for

written

characters

and

text.

It

is

a

universal

standard

that

enables

consistent

encoding

of

multilingual

text

and

allows

text

data

to

be

interchanged

internationally

without

conflict.

The

ISO

standard

for

C

refers

to

ISO/IEC

10646–1:2000,

Information

Technology—Universal

Multiple-Octet

Coded

Character

Set

(UCS).

(The

term

octet

is

used

by

ISO

to

refer

to

a

byte.)

The

ISO/IEC

10646

standard

is

more

restrictive

than

the

Unicode

Standard

in

the

number

of

encoding

forms:

a

character

set

that

conforms

to

ISO/IEC

10646

is

also

conformant

to

the

Unicode

Standard.

The

Unicode

Standard

specifies

a

unique

numeric

value

and

name

for

each

character

and

defines

three

encoding

forms

for

the

bit

representation

of

the

numeric

value.

The

name/value

pair

creates

an

identity

for

a

character.

The

hexadecimal

value

representing

a

character

is

called

a

code

point.

The

specification

also

describes

overall

character

properties,

such

as

case,

directionality,

alphabetic

properties,

and

other

semantic

information

for

each

character.

Modeled

on

ASCII,

the

Unicode

Standard

treats

alphabetic

characters,

ideographic

characters,

and

symbols,

and

allows

implementation-defined

character

codes

in

reserved

code

point

ranges.

The

encoding

scheme

of

the

Unicode

Standard

is

therefore

sufficiently

flexible

to

handle

all

known

character

encoding

requirements,

including

coverage

of

historical

scripts

from

any

country

in

the

world.

C99

allows

the

universal

character

name

construct

defined

in

ISO/IEC

10646

to

represent

characters

outside

the

basic

source

character

set.

It

permits

universal

character

names

in

identifiers,

character

constants,

and

string

literals.

The

following

table

shows

the

generic

universal

character

name

construct

and

how

it

corresponds

to

the

ISO/IEC

10646

short

name.

Universal

character

name

ISO/IEC

10646

short

name

\UNNNNNNNN

NNNNNNNN

\uNNNN

0000NNNN

where

N

is

a

hexadecimal

digit

C99

disallows

the

hexadecimal

values

representing

characters

in

the

basic

character

set

(base

source

code

set)

and

the

code

points

reserved

by

ISO/IEC

10646

for

control

characters.

The

following

characters

are

also

disallowed:

v

Any

character

whose

short

identifier

is

less

than

00A0.

The

exceptions

are

0024

($),

0040

(@),

or

0060

(`).

v

Any

character

whose

short

identifier

is

in

the

code

point

range

D800

through

DFFF

inclusive.

XL

C/C++

implements

the

data

types

uint_least16_t

and

uint_least32_t

to

process

UTF-16

and

UTF-32

characters

in

C

and

C++

in

conformance

with

the

Unicode

Standard.

The

data

types,

also

referred

to

as

u-literals

and

U-literals,

respectively,

are

the

string

literals

required

by

the

Unicode

Standard

to

specify

a

UTF-16

or

UTF-32

character,

and

were

approved

by

the

C

Standards

Committee.

Previously,

a

UTF-16

character

was

represented

by

an

unsigned

short,

and

a

UTF-32

character,

by

an

unsigned

int.

The

support

for

u-literals

and

U-literals

is

similar

to

that

for

wide

character

literals.

Character

Set

10

C

Language

Reference

u"s-char-sequence"

Denotes

an

array

of

uint_least16_t.

The

corresponding

character

literal

is

denoted

by

U’c-char-sequence’

U"s-char-sequence"

Denotes

an

array

of

uint_least32_t.

The

corresponding

character

literal

is

denoted

by

U’c-char-sequence’

For

example,

uint_least16_t

msg[]

=

u"ucs

characters

\u1234

and

\U81801234

";

String

concatenation

The

u-literals

and

U-literals

follow

the

same

concatenation

rule

as

wide

character

literals:

the

normal

character

string

is

widened

if

they

are

present.

The

following

shows

the

allowed

combinations.

All

other

combinations

are

invalid.

Combination

Result

u"a"

u"b"

u"ab"

u"a"

"b"

u"ab"

"a"

u"b"

u"ab"

U"a"

U"b"

U"ab"

U"a"

"b"

U"ab"

"a"

U"b"

U"ab"

Multiple

concatentations

are

allowed,

with

these

rules

applied

recursively.

Trigraph

Sequences

Some

characters

from

the

C

character

set

are

not

available

in

all

environments.

You

can

enter

these

characters

into

a

C

source

program

using

a

sequence

of

three

characters

called

a

trigraph.

The

trigraph

sequences

are:

Trigraph

Single

character

Description

??=

#

pound

sign

??(

[

left

bracket

??)

]

right

bracket

??<

{

left

brace

??>

}

right

brace

??/

\

backslash

??’

^

caret

??!

|

vertical

bar

??-

~

tilde

The

preprocessor

replaces

trigraph

sequences

with

the

corresponding

single-character

representation.

Multibyte

Characters

A

multibyte

character

is

a

character

whose

bit

representation

fits

into

one

or

more

bytes

and

is

a

member

of

the

extended

character

set.

The

extended

character

set

is

a

Character

Set

Chapter

2.

Lexical

elements

11

superset

of

the

basic

character

set.

The

term

wide

character

is

a

character

whose

bit

representation

accommodates

an

object

of

type

wchar_t,

capable

of

representing

any

character

in

the

current

locale.

Related

References

v

“char

and

wchar_t

Type

Specifiers”

on

page

41

Comments

A

comment

is

text

replaced

during

preprocessing

by

a

single

space

character;

the

compiler

therefore

ignores

all

comments.

A

comment

consists

of

the

/*

(slash,

asterisk)

characters,

followed

by

any

sequence

of

characters

(including

new

lines),

followed

by

the

*/

characters.

You

can

put

comments

anywhere

the

language

allows

white

space.

You

cannot

nest

comments

inside

other

comments.

Each

comment

ends

at

the

first

occurrence

of

*/.

Multibyte

characters

can

also

be

included

within

a

comment.

Note:

The

/*

or

*/

characters

found

in

a

character

constant

or

string

literal

do

not

start

or

end

comments.

In

the

following

program,

the

second

printf()

is

a

comment:

#include

<stdio.h>

int

main(void)

{

printf("This

program

has

a

comment.\n");

/*

printf("This

is

a

comment

line

and

will

not

print.\n");

*/

return

0;

}

Because

the

second

printf()

is

equivalent

to

a

space,

the

output

of

this

program

is:

This

program

has

a

comment.

Because

the

comment

delimiters

are

inside

a

string

literal,

printf()

in

the

following

program

is

not

a

comment.

#include

<stdio.h>

int

main(void)

{

printf("This

program

does

not

have

\

/*

NOT

A

COMMENT

*/

a

comment.\n");

return

0;

}

The

output

of

the

program

is:

This

program

does

not

have

/*

NOT

A

COMMENT

*/

a

comment.

In

the

following

example,

the

comments

are

highlighted:

/*

A

program

with

nested

comments.

*/

#include

<stdio.h>

int

main(void)

Character

Set

12

C

Language

Reference

{

test_function();

return

0;

}

int

test_function(void)

{

int

number;

char

letter;

/*

number

=

55;

letter

=

’A’;

/*

number

=

44;

*/

*/

return

999;

}

In

test_function,

the

compiler

reads

the

first

/*

through

to

the

first

*/.

The

second

*/

causes

an

error.

To

avoid

commenting

over

comments

already

in

the

source

code,

you

should

use

conditional

compilation

preprocessor

directives

to

cause

the

compiler

to

bypass

sections

of

a

program.

For

example,

instead

of

commenting

out

the

above

statements,

change

the

source

code

in

the

following

way:

/*

A

program

with

conditional

compilation

to

avoid

nested

comments.

*/

#define

TEST_FUNCTION

0

#include

<stdio.h>

int

main(void)

{

test_function();

return

0;

}

int

test_function(void)

{

int

number;

char

letter;

#if

TEST_FUNCTION

number

=

55;

letter

=

’A’;

/*number

=

44;*/

#endif

/*TEST_FUNCTION

*/

}

Related

References

v

“Trigraph

Sequences”

on

page

11

Identifiers

Identifiers

provide

names

for

the

following

language

elements:

v

Functions

v

Objects

v

Labels

v

Function

parameters

v

Macros

and

macro

parameters

v

Typedefs

v

Enumerated

types

and

enumerators

v

Struct

and

union

names

An

identifier

consists

of

an

arbitrary

number

of

letters,

digits,

or

the

underscore

character

in

the

form:

Comments

Chapter

2.

Lexical

elements

13

��

letter

_

�

letter

digit

_

��

The

universal

character

names

for

letters

and

digits

outside

of

the

basic

source

character

set

are

allowed

at

the

C99

language

level.

Reserved

Identifiers

Identifiers

with

two

initial

underscores

or

an

initial

underscore

followed

by

an

uppercase

letter

are

reserved

globally

for

use

by

the

compiler.

Identifiers

that

begin

with

an

underscore

are

reserved

as

identifiers

with

file

scope

in

both

the

ordinary

and

tag

name

spaces.

Case

Sensitivity

and

Special

Characters

in

Identifiers

The

compiler

distinguishes

between

uppercase

and

lowercase

letters

in

identifiers.

For

example,

PROFIT

and

profit

represent

different

identifiers.

Avoid

creating

identifiers

that

begin

with

an

underscore

(_)

for

function

names

and

variable

names.

The

first

character

in

an

identifier

must

be

a

letter.

The

_

(underscore)

character

is

considered

a

letter;

however,

identifiers

beginning

with

an

underscore

are

reserved

by

the

compiler

for

identifiers

at

global

namespace

scope.

Identifiers

that

contain

two

consecutive

underscores

or

begin

with

an

underscore

followed

by

a

capital

letter

are

reserved

in

all

contexts.

The

dollar

sign

can

appear

in

identifier

names

when

compiled

using

the

-qdollar

compiler

option

or

at

one

of

the

extended

language

levels

that

encompasses

this

option.

You

should

always

include

the

appropriate

headers

when

using

standard

library

functions.

Although

the

names

of

system

calls

and

library

functions

are

not

reserved

words

if

you

do

not

include

the

appropriate

headers,

avoid

using

them

as

identifiers.

Duplication

of

a

predefined

name

can

lead

to

confusion

for

the

maintainers

of

your

code

and

can

cause

errors

at

link

time

or

run

time.

If

you

include

a

library

in

a

program,

be

aware

of

the

function

names

in

that

library

to

avoid

name

duplications.

You

should

always

include

the

appropriate

headers

when

using

standard

library

functions.

Predefined

Identifiers

The

predefined

identifier

__func__

makes

the

function

name

available

for

use

within

the

function.

Immediately

following

the

opening

brace

of

each

function

definition,

__func__

is

implicitly

declared

by

the

compiler.

The

resulting

behavior

is

as

if

the

following

declaration

had

been

made:

static

const

char

__func__[]

=

"function-name";

where

function-name

is

the

name

of

the

lexically-enclosing

function.

The

function

name

is

not

mangled.

Identifiers

14

C

Language

Reference

When

this

identifier

is

used

with

the

assert

macro,

the

macro

adds

the

name

of

the

enclosing

function

on

the

standard

error

stream.

Keywords

Keywords

are

identifiers

reserved

by

the

language

for

special

use.

Although

you

can

use

them

for

preprocessor

macro

names,

it

is

poor

programming

style.

Only

the

exact

spelling

of

keywords

is

reserved.

For

example,

auto

is

reserved

but

AUTO

is

not.

The

following

lists

the

keywords

common

to

both

the

C

and

C++

languages:

auto

break

case

char

const

continue

default

do

double

else

enum

extern

float

for

goto

if

inline

int

long

register

return

short

signed

sizeof

static

struct

switch

typedef

union

unsigned

void

volatile

while

The

C

language

also

reserves

the

following

keywords:

restrict

_Bool

_Complex

_Imaginary

uint_least16_t

uint_least32_t

Keywords

for

Language

Extensions

2000AIX

In

addition

to

standard

language

keywords,

XL

C

reserves

identifiers

for

language

extensions,

ease

of

porting

applications

developed

with

the

GNU

C

compiler,

and

for

future

use.

The

following

keywords

are

reserved

for

use

in

language

extensions:

typeof

__align

__alignof__

__asm

__asm__

__attribute__

__complex__

__const__

__extension__

__imag__

__inline__

__label__

__real__

__restrict

__signed__

__typeof__

__volatile__

Alternative

Representations

of

Operators

and

Punctuators

In

addition

to

the

reserved

language

keywords,

the

following

alternative

representations

of

operators

and

punctuators

are

also

reserved

in

C:

and

and_eq

bitand

bitor

compl

not

not_eq

or

or_eq

xor

xor_eq

Identifiers

Chapter

2.

Lexical

elements

15

Literals

The

term

literal

constant

or

literal

refers

to

a

value

that

occurs

in

a

program

and

cannot

be

changed.

The

C

language

uses

the

term

constant

in

place

of

the

noun

literal.

The

adjective

literal

adds

to

the

concept

of

a

constant

the

notion

that

we

can

speak

of

it

only

in

terms

of

its

value.

A

literal

constant

is

nonaddressable,

which

means

that

its

value

is

stored

somewhere

in

memory,

but

we

have

no

means

of

accessing

that

address.

Every

literal

has

a

value

and

a

data

type.

The

value

of

any

literal

does

not

change

while

the

program

runs

and

must

be

in

the

range

of

representable

values

for

its

type.

The

following

are

the

available

types

of

literals:

v

Boolean

v

Integer

v

Character

v

Floating-point

v

String

v

Compound

literal

C99

adds

the

compound

literal

as

a

postfix

expression.

The

language

feature

provides

a

way

to

specify

constants

of

aggregate

or

union

type.

Boolean

Literals

The

C

language

does

not

define

any

Boolean

literals,

but

instead

uses

the

integer

values

0

and

1

to

represent

boolean

values.

The

value

zero

represents

″false″

and

all

nonzero

values

represent

″true.″

C

defines

″true″

and

″false″

as

macros

in

the

header

file

<stdbool.h>.

When

these

macros

are

defined,

the

macro

__bool_true_false_are_defined

is

expanded

to

the

integer

constant

1.

Related

References

v

“Boolean

Variables”

on

page

41

v

“Lvalues

and

Rvalues”

on

page

86

Integer

Literals

Integer

literals

can

represent

decimal,

octal,

or

hexadecimal

values.

They

are

numbers

that

do

not

have

a

decimal

point

or

an

exponential

part.

However,

an

integer

literal

may

have

a

prefix

that

specifies

its

base,

or

a

suffix

that

specifies

its

type.

��

decimal_constant

octal_constant

hexadecimal_constant

l

L

u

ll

U

LL

u

U

l

L

ll

LL

��

The

data

type

of

an

integer

literal

is

determined

by

its

form,

value,

and

suffix.

The

following

table

lists

the

integer

literals

and

shows

the

possible

data

types.

The

smallest

data

type

that

can

represent

the

constant

value

is

used

to

store

the

Literals

16

C

Language

Reference

constant.

Integer

Literal

Possible

Data

Types

unsuffixed

decimal

int,

long

int,

unsigned

long

int,

long

long

int

unsuffixed

octal

int,

unsigned

int,

long

int,

unsigned

long

int,

long

long

int,

unsigned

long

long

int

unsuffixed

hexadecimal

int,

unsigned

int,

long

int,

unsigned

long

int,

long

long

int,

unsigned

long

long

int

decimal,

octal,

or

hexadecimal

suffixed

by

u

or

U

unsigned

int,

unsigned

long

int,

unsigned

long

long

int

decimal

suffixed

by

l

or

L

long

int,

long

long

int

octal

or

hexadecimal

suffixed

by

l

or

L

long

int,

unsigned

long

int,

long

long

int,

unsigned

long

long

int

decimal,

octal,

or

hexadecimal

suffixed

by

both

u

or

U,

and

l

or

L

unsigned

long

int,

unsigned

long

long

int

decimal

suffixed

by

ll

or

LL

long

long

int

octal

or

hexadecimal

suffixed

by

ll

or

LL

long

long

int,

unsigned

long

long

int

decimal,

octal,

or

hexadecimal

suffixed

by

both

u

or

U,

and

ll

or

LL

unsigned

long

long

int

A

plus

(+)

or

minus

(-)

symbol

can

precede

an

integer

literal.

The

operator

is

treated

as

a

unary

operator

rather

than

as

part

of

the

literal.

Decimal

Integer

Literals

A

decimal

integer

literal

contains

any

of

the

digits

0

through

9.

The

first

digit

cannot

be

0.

��

digit_1_to_9

�

digit_0_to_9

��

Integer

literals

beginning

with

the

digit

0

are

interpreted

as

an

octal

integer

literal

rather

than

as

a

decimal

integer

literal.

The

following

are

examples

of

decimal

literals:

485976

-433132211

+20

5

A

plus

(+)

or

minus

(-)

symbol

can

precede

the

decimal

integer

literal.

The

operator

is

treated

as

a

unary

operator

rather

than

as

part

of

the

literal.

Hexadecimal

Integer

Literals

A

hexadecimal

integer

literal

begins

with

the

0

digit

followed

by

either

an

x

or

X,

followed

by

any

combination

of

the

digits

0

through

9

and

the

letters

a

through

f

or

A

through

F.

The

letters

A

(or

a)

through

F

(or

f)

represent

the

values

10

through

15,

respectively.

Literals

Chapter

2.

Lexical

elements

17

��

0x

0X

�

digit_0_to_f

digit_0_to_F

��

The

following

are

examples

of

hexadecimal

integer

literals:

0x3b24

0XF96

0x21

0x3AA

0X29b

0X4bD

Octal

Integer

Literals

An

octal

integer

literal

begins

with

the

digit

0

and

contains

any

of

the

digits

0

through

7.

��

0

�

digit_0_to_7

��

The

following

are

examples

of

octal

integer

literals:

0

0125

034673

03245

Floating-Point

Literals

A

floating-point

literal

consists

of

the

following:

v

An

integral

part

v

A

decimal

point

v

A

fractional

part

v

An

exponent

part

v

An

optional

suffix

Both

the

integral

and

fractional

parts

are

made

up

of

decimal

digits.

You

can

omit

either

the

integral

part

or

the

fractional

part,

but

not

both.

You

can

omit

either

the

decimal

point

or

the

exponent

part,

but

not

both.

��

�

�

�

�

.

digit

digit

exponent

digit

.

exponent

digit

exponent

f

F

l

L

��

Exponent:

Literals

18

C

Language

Reference

e

E

+

-

�

digit

The

magnitude

range

of

float

is

approximately

1.2e-38

to

3.4e38.

The

magnitude

range

of

double

or

long

double

is

approximately

2.2e-308

to

1.8e308.

If

a

floating-point

constant

is

too

large

or

too

small,

the

result

is

undefined

by

the

language.

The

suffix

f

or

F

indicates

a

type

of

float,

and

the

suffix

l

or

L

indicates

a

type

of

long

double.

If

a

suffix

is

not

specified,

the

floating-point

constant

has

a

type

double.

A

plus

(+)

or

minus

(-)

symbol

can

precede

a

floating-point

literal.

However,

it

is

not

part

of

the

literal;

it

is

interpreted

as

a

unary

operator.

The

following

are

examples

of

floating-point

literals:

Floating-Point

Constant

Value

5.3876e4

53,876

4e-11

0.00000000004

1e+5

100000

7.321E-3

0.007321

3.2E+4

32000

0.5e-6

0.0000005

0.45

0.45

6.e10

60000000000

When

you

use

the

printf

function

to

display

a

floating-point

constant

value,

make

certain

that

the

printf

conversion

code

modifiers

that

you

specify

are

large

enough

for

the

floating-point

constant

value.

Related

References

v

“Floating-Point

Variables”

on

page

42

v

“Unary

Expressions”

on

page

94

Hexadecimal

Floating

Constants

A

hexadecimal

floating

constant

consists

of

the

following:

v

the

hexadecimal

prefix

v

a

significant

part

v

a

binary

exponent

part

v

an

optional

suffix

The

significant

part

represents

a

rational

number

and

is

composed

of

the

following:

v

a

sequence

of

hexadecimal

digits

(whole-number

part)

v

an

optional

fraction

part

The

optional

fraction

part

is

a

period

followed

by

a

sequence

of

hexadecimal

digits.

Literals

Chapter

2.

Lexical

elements

19

The

exponent

part

indicates

the

power

of

2

to

which

the

significant

part

is

raised,

and

is

an

optionally

signed

decimal

integer.

The

type

suffix

is

optional.

The

full

syntax

is

as

follows:

��

0x

0X

�

�

�

�

.

digit_0_to_f

exponent

digit_0_to_f

digit_0_to_F

digit_0_to_F

digit_0_to_f

.

exponent

digit_0_to_F

digit_0_to_f

exponent

digit_0_to_F

�

�

f

F

l

L

��

Exponent:

p

P

+

-

�

digit_0_to_9

You

can

omit

either

the

whole-number

part

or

the

fraction

part,

but

not

both.

The

binary

exponent

part

is

required

to

avoid

the

ambiguity

of

the

type

suffix

F

being

mistaken

for

a

hexadecimal

digit.

Complex

Literals

A

complex

literal

type

represents

a

complex

number.

The

predefined

macro

_Complex_I

represents

a

constant

expression

of

type

const

float

_Complex

with

the

value

of

the

imaginary

unit.

For

example,

float

_Complex

varComplex

=

2.0f

+

2.0f*_Complex_I;

initializes

the

variable

varComplex

to

type

float

_Complex.

The

complex

type

can

also

be

indicated

by

one

of

the

suffixes:

i,

I,

j,

or

J.

The

real

part

of

the

complex

number

can

be

indicated

by

one

of

the

suffixes:

f,

F,

l,

or

L.

These

suffixes

are

extensions

of

C99

for

ease

of

porting

applications

developed

with

GNU

C.

The

simplified

syntax

for

a

complex

literal

is:

��

floating-constant

complex-suffix

��

Literals

20

C

Language

Reference

floating-constant:

decimal-floating-constant

hexadecimal-floating-constant

complex-suffix:

suffixij

floating-suffix

suffixij

floating-suffix

where

floating-suffix

is

one

of

f,

F,

l

(lowercase

el)

or

L.

The

suffixes

f

or

F

indicates

a

complex

literal

of

type

float

_Complex.

The

suffixes

l

or

L

indicates

a

complex

literal

of

type

long

double

_Complex.

A

complex

literal

is

of

type

double

_Complex

in

the

absense

of

suffixes.

suffixij

is

one

of

i,

I,

j,

J.

Related

References

v

“Unary

operators

for

complex

types”

on

page

94

Character

Literals

A

character

literal

contains

a

sequence

of

characters

or

escape

sequences

enclosed

in

single

quotation

mark

symbols,

for

example

’c’.

A

character

literal

may

be

prefixed

with

the

letter

L,

for

example

L’c’.

A

character

literal

without

the

L

prefix

is

an

ordinary

character

literal

or

a

narrow

character

literal.

A

character

literal

with

the

L

prefix

is

a

wide

character

literal.

An

ordinary

character

literal

that

contains

more

than

one

character

or

escape

sequence

(excluding

single

quotes

(’),

backslashes

(\)

or

new-line

characters)

is

a

multicharacter

literal.

Character

literals

have

the

following

form:

��

L

'

�

character

escape_sequence

'

��

At

least

one

character

or

escape

sequence

must

appear

in

the

character

literal.

The

characters

can

be

from

the

source

program

character

set,

excluding

the

single

quotation

mark,

backslash

and

new-line

symbols.

The

universal

character

name

for

a

character

outside

the

basic

source

character

set

is

allowed.

A

character

literal

must

appear

on

a

single

logical

source

line.

A

character

literal

has

type

int.

A

wide

character

literal

has

type

wchar_t,

and

a

multicharacter

literal

has

type

int.

The

value

of

a

narrow

or

wide

character

literal

containing

a

single

character

is

the

numeric

representation

of

the

character

in

the

character

set

used

at

run

time.

The

value

of

a

narrow

or

wide

character

literal

containing

more

than

one

character

or

escape

sequence

is

implementation-defined.

Literals

Chapter

2.

Lexical

elements

21

You

can

represent

the

double

quotation

mark

symbol

by

itself,

but

you

must

use

the

backslash

symbol

followed

by

a

single

quotation

mark

symbol

(\’

escape

sequence)

to

represent

the

single

quotation

mark

symbol.

You

can

represent

the

new-line

character

by

the

\n

new-line

escape

sequence.

You

can

represent

the

backslash

character

by

the

\\

backslash

escape

sequence.

The

following

are

examples

of

character

literals:

’a’

’\’’

L’0’

’(’

Related

References

v

“char

and

wchar_t

Type

Specifiers”

on

page

41

v

“The

Unicode

Standard”

on

page

10

String

Literals

A

string

literal

contains

a

sequence

of

characters

or

escape

sequences

enclosed

in

double

quotation

mark

symbols.

��

L

"

�

character

escape_sequence

"

��

The

universal

character

name

for

a

character

outside

the

basic

source

character

set

is

allowed.

A

string

literal

with

the

prefix

L

is

a

wide

string

literal.

A

string

literal

without

the

prefix

L

is

an

ordinary

or

narrow

string

literal.

The

type

of

a

narrow

string

literal

is

array

of

char

and

the

type

of

a

wide

string

literal

is

array

of

wchar_t.

The

following

are

examples

of

string

literals:

char

titles[

]

=

"Handel’s

\"Water

Music\"";

char

*mail_addr

=

"Last

Name

First

Name

MI

Street

Address

\

City

Province

Postal

code

";

char

*temp_string

=

"abc"

"def"

"ghi";

/*

*temp_string

=

"abcdefghi\0"

*/

wchar_t

*wide_string

=

L"longstring";

A

null

('\0')

character

is

appended

to

each

string.

For

a

wide

string

literal,

the

value

'\0'

of

type

wchar_t

is

appended.

By

convention,

programs

recognize

the

end

of

a

string

by

finding

the

null

character.

Multiple

spaces

contained

within

a

string

literal

are

retained.

To

continue

a

string

on

the

next

line,

use

the

line

continuation

character

(\

symbol)

followed

by

optional

whitespace

and

a

new-line

character

(required).

In

the

following

example,

the

string

literal

second

causes

a

compile-time

error.

char

*first

=

"This

string

continues

onto

the

next\

line,

where

it

ends.";

/*

compiles

successfully.

*/

char

*second

=

"The

comment

makes

the

\

/*

continuation

symbol

*/

invisible

to

the

compiler.";

/*

compilation

error.

*/

Literals

22

C

Language

Reference

Concatenation

Another

way

to

continue

a

string

is

to

have

two

or

more

consecutive

strings.

Adjacent

string

literals

will

be

concatenated

to

produce

a

single

string.

If

a

wide

string

literal

and

a

narrow

string

literal

are

adjacent

to

each

other,

the

resulting

behavior

is

undefined.

The

following

example

demonstrates

this:

"hello

"

"there"

/*

is

equivalent

to

"hello

there"

*/

"hello

"

L"there"

/*

the

behavior

at

the

C89

language

level

is

undefined

*/

"hello"

"there"

/*

is

equivalent

to

"hellothere"

*/

Characters

in

concatenated

strings

remain

distinct.

For

example,

the

strings

″\xab″

and

″3″

are

concatenated

to

form

″\xab3″.

However,

the

characters

\xab

and

3

remain

distinct

and

are

not

merged

to

form

the

hexadecimal

character

\xab3.

If

a

wide

string

literal

and

a

narrow

string

literal

are

adjacent,

the

result

is

a

wide

string

literal.

Following

any

concatenation,

'\0'

of

type

char

is

appended

at

the

end

of

each

string.

For

a

wide

string

literal,

'\0'

of

type

wchar_t

is

appended.

For

example:

char

*first

=

"Hello

";

/*

stored

as

"Hello

\0"

*/

char

*second

=

"there";

/*

stored

as

"there\0"

*/

char

*third

=

"Hello

"

"there";

/*

stored

as

"Hello

there\0"

*/

Compound

Literals

A

compound

literal

is

a

postfix

expression

that

provides

an

unnamed

object

whose

value

is

given

by

the

initializer

list.

The

expressions

in

the

initializer

list

may

be

constants.

The

C99

language

feature

allows

compound

constants

in

initializers

and

expressions,

providing

a

way

to

specify

constants

of

aggregate

or

union

type.

When

an

instance

of

one

of

these

types

is

used

only

once,

a

compound

literal

eliminates

the

necessity

of

temporary

variables.

C++

supports

this

feature

as

an

extension

to

Standard

C++

for

compatibility

with

C.

The

syntax

for

a

compound

literal

resembles

that

of

a

cast

expression.

However,

a

compound

literal

is

an

lvalue,

while

the

result

of

a

cast

expression

is

not.

Furthermore,

a

cast

can

only

convert

to

scalar

types

or

void,

whereas

a

compound

literal

results

in

an

object

of

the

specified

type.

The

syntax

is

as

follows:

��

(

type_name

)

{

initializer_list

}

initializer_list

,

��

If

the

type

is

an

array

of

unknown

size,

the

size

is

determined

by

the

initializer

list.

A

compound

literal

has

static

storage

duration

if

it

occurs

outside

the

body

of

a

function

and

the

initializer

list

consists

of

constant

expressions.

Otherwise,

it

has

automatic

storage

duration

associated

with

the

enclosing

block.

The

following

expressions

have

different

meanings.

The

compound

literals

have

automatic

storage

duration

when

they

occur

within

the

body

of

a

function.:

"string"

/*

an

array

of

char

with

static

storage

duration

*/

(char[]){"string"}

/*

modifiable

*/

(const

char[]){"string"}

/*

not

modifiable

*/

A

const-qualified

compound

literal

can

be

placed

in

read-only

memory.

Compound

literals

with

const-qualified

types

can

share

storage

with

string

literals

with

the

same

or

overlapping

representations.

For

example,

Literals

Chapter

2.

Lexical

elements

23

(const

char[]){"string"}

==

"string"

might

yield

1

if

the

storage

is

shared.

However,

compound

literals

with

const-qualified

types

are

not

necessarily

shared.

The

following

expressions

result

in

two

distinct

objects

of

type

struct

s.

(const

struct

s){1,2,3}

(const

struct

s){1,2,3}

Literals

24

C

Language

Reference

Chapter

3.

Declarations

A

declaration

establishes

the

names

and

characteristics

of

data

objects

and

functions

used

in

a

program.

A

definition

allocates

storage

for

data

objects

or

specifies

the

body

for

a

function,

and

associates

an

identifier

with

that

object

or

function.

When

you

declare

or

define

a

type,

no

storage

is

allocated.

In

diverse

ways,

declarations

determine

the

interrelated

attributes

of

an

object:

storage

class,

type,

scope,

visibility,

storage

duration,

and

linkage.

Declaration

Overview

Declarations

determine

the

following

properties

of

data

objects

and

their

identifiers:

v

Scope,

which

describes

the

region

of

program

text

in

which

an

identifier

can

be

used

to

access

its

object.

v

Visibility,

which

describes

the

region

of

program

text

from

which

legal

access

can

be

made

to

the

identifier’s

object.

v

Duration,

which

defines

the

period

during

which

the

identifiers

have

real,

physical

objects

allocated

in

memory.

v

Linkage,

which

describes

the

correct

association

of

an

identifier

to

one

particular

object.

v

Type,

which

determines

how

much

memory

is

allocated

to

an

object

and

how

the

bit

patterns

found

in

the

storage

allocation

of

that

object

should

be

interpreted

by

the

program.

The

lexical

order

of

elements

of

a

declaration

for

a

data

object

is

as

follows:

v

Storage

duration

and

linkage

specification

v

Type

specification

v

Declarators,

which

introduce

identifiers

and

make

use

of

type

qualifiers

and

storage

qualifiers

v

Initializers,

which

initialize

storage

with

initial

values

All

data

declarations

have

the

form:

��

�

storage_class_specifier

type_specifier

type_qualifier

�

,

declarator

initializer

;

��

The

following

table

shows

examples

of

declarations

and

definitions.

The

identifiers

declared

in

the

first

column

do

not

allocate

storage;

they

refer

to

a

corresponding

definition.

In

the

case

of

a

function,

the

corresponding

definition

is

the

code

or

body

of

the

function.

The

identifiers

declared

in

the

second

column

allocate

storage;

they

are

both

declarations

and

definitions.

Declarations

Declarations

and

Definitions

extern

double

pi;

double

pi

=

3.14159265;

float

square(float

x);

float

square(float

x)

{

return

x*x;

}

©

Copyright

IBM

Corp.

1998,

2004

25

Declarations

Declarations

and

Definitions

struct

payroll;

struct

payroll

{

char

*name;

float

salary;

}

employee;

Related

References

v

Chapter

4,

“Declarators,”

on

page

67

Variable

Attributes

Variable

attributes

are

orthogonal

language

extensions

provided

to

facilitate

handling

programs

developed

with

the

GNU

C

compiler.

These

language

features

allow

you

use

named

attributes

to

modify

the

declarations

of

variables.

The

syntax

and

supported

variable

attributes

are

described

in

this

section.

For

unsupported

attribute

names,

the

XL

C

issues

diagnostics

and

ignores

the

attribute

specification.

The

keyword

__attribute__

specifies

a

variable

attribute.

An

attribute

syntax

has

the

general

form:

��

__attribute__

�

,

((

))

attribute_name

__attribute_name__

��

Attribute

specifiers

are

declaration

specifiers,

and

therefore

can

appear

before

the

declarator

in

a

declaration.

The

attribute

specifier

can

also

follow

a

declarator.

In

this

case,

it

applies

only

to

that

particular

declarator

in

a

comma-separated

list

of

declarators.

A

variable

attribute

specification

using

the

form

__attribute_name__

(that

is,

the

variable

attribute

keyword

with

double

underscore

characters

leading

and

trailing)

reduces

the

likelihood

of

a

name

conflict

with

a

macro

of

the

same

name.

Related

References

v

“Function

Attributes”

on

page

123

v

“Type

Attributes”

on

page

36

The

aligned

Variable

Attribute

The

variable

attribute

aligned

allows

you

to

specify

a

minimum

alignment

in

bytes

for

a

variable

or

structure

member.

Specifying

the

alignment

can

improve

the

efficiency

of

copy

operations

because

the

compiler

can

then

use

the

instructions

that

copy

the

largest

amounts

of

memory

when

copying

to

or

from

the

variables

or

structure

members

aligned

in

this

way.

When

the

aligned

variable

attribute

is

applied

to

an

automatic

variable,

the

alignment

is

limited

by

the

maximum

alignment

of

the

stack.

When

attribute

aligned

is

applied

to

a

bit

field

structure

member,

the

bit

field

container

is

aligned

according

to

the

alignment

specification,

unless

the

alignment

of

the

container

is

greater

than

the

alignment

factor.

In

this

case,

attribute

aligned

is

ignored.

��

__attribute__

((

aligned

))

__aligned__

(

alignment_factor

)

��

Declarations

26

C

Language

Reference

where

alignment_factor

is

a

constant

expression

that

evaluates

to

1

or

a

positive

power

of

two.

Omitting

the

alignment

factor

(and

its

enclosing

parentheses)

allows

the

compiler

to

determine

an

alignment.

The

alignment

will

be

the

largest

strict

alignment

for

any

natural

type

(that

is,

integral

or

real)

that

can

be

handled

on

the

target

machine.

The

aligned

attribute

only

increases

alignment.

The

packed

attribute

can

be

used

to

decrease

it.

An

alignment

factor

greater

than

the

platform

maximum

is

ignored

with

a

warning,

and

the

results

are

unpredictable.

The

mode

Variable

Attribute

The

variable

attribute

mode

allows

you

to

override

the

type

specifier

in

a

variable

declaration.

The

original

type

indicated

by

the

type

specifier

is

overridden

by

an

integral

type

of

a

particular

size.

The

size

is

indicated

by

the

value

of

the

mode

parameter.

For

example,

a

mode

value

of

__word__

results

in

an

integer

variable

that

is

four

bytes

in

size.

The

sign

of

the

original

type

specifier

is

preserved.

Valid

arguments

for

attribute

mode

are

byte,

word,

and

pointer,

and

the

forms

of

these

modes

with

leading

and

trailing

double

underscores.

v

byte

means

a

1-byte

integer

type

v

word

means

a

4-byte

integer

type

v

pointer

means

4-byte

integer

type

in

32-bit

mode

and

an

8-byte

integer

type

in

64-bit

mode

The

syntax

is

as

follows:

��

__attribute__

((

mode

(

byte

)

))

__mode__

word

pointer

__byte__

__word__

__pointer__

��

where

mode

is

a

type

specifier

that

includes

an

indication

of

width.

The

packed

Variable

Attribute

The

variable

attribute

packed

allows

you

to

specify

that

a

structure

member

or

bit

field

structure

member

should

have

the

smallest

possible

alignment:

one

byte

for

a

member

and

one

bit

for

a

field,

unless

a

larger

value

is

specified

with

the

aligned

variable

attribute.

The

syntax

is

as

follows:

��

__attribute__

((

packed

))

__packed__

��

The

weak

Variable

Attribute

2000AIX

2000Linux

The

variable

attribute

weak

and

the

function

attribute

weak

have

the

same

behavior

and

rationale.

The

syntax

for

applying

an

attribute

specifier

to

a

variable

declaration

allows

the

variable

attribute

specifier

to

appear

either

before

or

after

the

declarator.

The

following

diagrams

show

the

two

forms

of

valid

declaration

syntax.

Declarations

Chapter

3.

Declarations

27

��

type_specifier

__attribute__

((

weak

))

variable_name

__weak__

��

The

above

syntax

is

the

same

as

that

for

declaring

and

defining

a

function

weak.

The

other

valid

syntax

for

declaring

a

weak

variable

is

the

same

as

that

for

a

weak

function

declaration,

but

not

the

function

definition.

��

type_specifier

variable_name

__attribute__

((

weak

))

__weak__

��

The

__align

Specifier

The

__align

keyword

allows

you

to

specify

an

explicit

alignment

for

a

data

structure.

The

keyword

is

an

orthogonal

language

extension

intended

to

be

used

in

the

definition

of

an

aggregate

type

or

in

the

declaration

of

a

first-level

variable.

The

specified

byte

boundary

affects

the

alignment

of

an

aggregate

as

a

whole,

not

that

of

its

members.

The

__align

specifier

can

be

applied

to

an

aggregate

definition

nested

within

another

aggregate

definition,

but

not

to

individual

elements

of

an

aggregate.

The

alignment

specification

is

ignored

for

parameters

and

automatic

variables.

A

declaration

takes

one

of

the

following

forms:

��

declarator

__align

(

int_constant

)

identifier

;

��

Structure

or

union

syntax:

��

__align

(

int_constant

)

struct_or_union_specifier

{

struct_declaration_list

}

;

tag

��

where:

int_constant

Is

a

positive

integer

value

indicating

the

byte-alignment

boundary.

The

legal

values

are

1,

or

any

positive

power

of

two.

struct_or_union_specifier

Is

a

structure

or

union

specifier.

struct_declaration_list

Is

a

structure

declaration

list.

tag

Is

a

structure

or

union

identifier.

Restrictions

and

limitations

The

__align

specifier

cannot

be

used

where

the

size

of

the

variable

alignment

is

smaller

than

the

size

of

the

type

alignment.

Not

all

alignments

may

be

representable

in

an

object

file.

The

__align

specifier

cannot

be

applied

to

the

following:

v

Individual

elements

within

an

aggregate

definition.

v

Individual

elements

of

an

array.

v

Variables

of

incomplete

type.

v

Aggregates

declared

but

not

defined.

v

Other

types

of

declarations

or

definitions,

such

as

a

typedef,

a

function,

or

an

enumeration.

Declarations

28

C

Language

Reference

Tentative

Definitions

A

tentative

definition

is

any

external

data

declaration

that

has

no

storage

class

specifier

and

no

initializer.

A

tentative

definition

becomes

a

full

definition

if

the

end

of

the

translation

unit

is

reached

and

no

definition

has

appeared

with

an

initializer

for

the

identifier.

In

this

situation,

the

compiler

reserves

uninitialized

space

for

the

object

defined.

The

following

statements

show

normal

definitions

and

tentative

definitions.

int

i1

=

10;

/*

definition,

external

linkage

*/

static

int

i2

=

20;

/*

definition,

internal

linkage

*/

extern

int

i3

=

30;

/*

definition,

external

linkage

*/

int

i4;

/*

tentative

definition,

external

linkage

*/

static

int

i5;

/*

tentative

definition,

internal

linkage

*/

int

i1;

/*

valid

tentative

definition

*/

int

i2;

/*

not

legal,

linkage

disagreement

with

previous

*/

int

i3;

/*

valid

tentative

definition

*/

int

i4;

/*

valid

tentative

definition

*/

int

i5;

/*

not

legal,

linkage

disagreement

with

previous

*/

Related

References

v

“Declaration

Overview”

on

page

25

v

“Storage

Class

Specifiers”

Objects

An

object

is

a

region

of

storage

that

contains

a

value

or

group

of

values.

Each

value

can

be

accessed

using

its

identifier

or

a

more

complex

expression

that

refers

to

the

object.

In

addition,

each

object

has

a

unique

data

type.

Both

the

identifier

and

data

type

of

an

object

are

established

in

the

object

declaration.

The

data

type

of

an

object

determines

the

initial

storage

allocation

for

that

object

and

the

interpretation

of

the

values

during

subsequent

access.

It

is

also

used

in

any

type

checking

operations.

The

C

language

has

built-in,

or

fundamental,

data

types

and

user-defined

data

types.

Standard

data

types

include

signed

and

unsigned

integers,

floating-point

numbers,

and

characters.

Enumerations,

structures,

and

unions

are

considered

user-defined

types.

Related

References

v

“Lvalues

and

Rvalues”

on

page

86

Storage

Class

Specifiers

A

storage

class

specifier

is

used

to

refine

the

declaration

of

a

variable,

a

function,

and

parameters.

The

storage

class

specifier

used

within

the

declaration

determines

whether:

v

The

object

has

internal,

external,

or

no

linkage

v

The

object

is

to

be

stored

in

memory

or

in

a

register,

if

available

v

The

object

receives

the

default

initial

value

0

or

an

indeterminate

default

initial

value

v

The

object

can

be

referenced

throughout

a

program

or

only

within

the

function,

block,

or

source

file

where

the

variable

is

defined

v

The

storage

duration

for

the

object

is

static

(storage

is

maintained

throughout

program

run

time)

or

automatic

(storage

is

maintained

only

during

the

execution

of

the

block

where

the

object

is

defined)

Declarations

Chapter

3.

Declarations

29

For

a

variable,

its

default

storage

duration,

scope,

and

linkage

depend

on

where

it

is

declared:

whether

inside

or

outside

a

block

statement

or

the

body

of

a

function.

When

these

defaults

are

not

satisfactory,

you

can

specify

an

explicit

storage

class:

auto,

static,

extern,

or

register.

For

a

function,

the

storage

class

specifier

determines

the

linkage

of

the

function.

The

only

options

are

extern

and

static.

A

function

that

is

declared

with

the

extern

storage

class

specifier

has

external

linkage,

which

means

that

it

can

be

called

from

other

translation

units.

A

function

declared

with

the

static

storage

class

specifier

has

internal

linkage,

which

means

that

it

may

be

called

only

within

the

translation

unit

in

which

it

is

defined.

The

default

for

a

function

is

external

linkage.

The

only

storage

class

that

can

be

specified

for

a

function

parameter

is

register.

The

reason

is

that

function

parameters

have

the

same

properties

as

auto

variables:

automatic

storage

duration,

block

scope,

and

no

linkage.

Declarations

with

the

auto

or

register

storage

class

specifier

result

in

automatic

storage.

Those

with

the

static

storage

class

specifier

result

in

static

storage.

Most

local

declarations

that

do

not

include

the

extern

storage

class

specifier

allocate

storage;

however,

function

declarations

and

type

declarations

do

not

allocate

storage.

The

only

storage

class

specifiers

allowed

in

a

namespace

or

global

scope

declaration

are

static

and

extern.

The

storage

class

specifiers

are:

v

auto

v

extern

v

register

v

static

v

typedef

typedef

is

categorized

as

a

storage

class

specifier

because

of

similarities

in

syntax

rather

than

functionality

and

because

a

typedef

declaration

does

not

allocate

storage.

auto

Storage

Class

Specifier

The

auto

storage

class

specifier

lets

you

explicitly

declare

a

variable

with

automatic

storage.

The

auto

storage

class

is

the

default

for

variables

declared

inside

a

block.

A

variable

x

that

has

automatic

storage

is

deleted

when

the

block

in

which

x

was

declared

exits.

You

can

only

apply

the

auto

storage

class

specifier

to

names

of

variables

declared

in

a

block

or

to

names

of

function

parameters.

However,

these

names

by

default

have

automatic

storage.

Therefore,

the

storage

class

specifier

auto

is

usually

redundant

in

a

data

declaration.

Initialization

You

can

initialize

any

auto

variable

except

function

parameters.

If

you

do

not

explicitly

initialize

an

automatic

object,

its

value

is

indeterminate.

If

you

provide

an

initial

value,

the

expression

representing

the

initial

value

can

be

any

valid

C

expression.

The

object

is

then

set

to

that

initial

value

each

time

the

program

block

that

contains

the

object’s

definition

is

entered.

Storage

Class

Specifiers

30

C

Language

Reference

Note

that

if

you

use

the

goto

statement

to

jump

into

the

middle

of

a

block,

automatic

variables

within

that

block

are

not

initialized.

Storage

duration

Objects

with

the

auto

storage

class

specifier

have

automatic

storage

duration.

Each

time

a

block

is

entered,

storage

for

auto

objects

defined

in

that

block

is

made

available.

When

the

block

is

exited,

the

objects

are

no

longer

available

for

use.

An

object

declared

with

no

linkage

specification

and

without

the

static

storage

class

specifier

has

automatic

storage

duration.

If

an

auto

object

is

defined

within

a

function

that

is

recursively

invoked,

memory

is

allocated

for

the

object

at

each

invocation

of

the

block.

Linkage

An

auto

variable

has

block

scope

and

no

linkage.

Related

References

v

“Block

Statement”

on

page

143

v

“goto

Statement”

on

page

156

v

“Function

Declarations”

on

page

121

extern

Storage

Class

Specifier

The

extern

storage

class

specifier

lets

you

declare

objects

and

functions

that

several

source

files

can

use.

An

extern

variable,

function

definition,

or

declaration

makes

the

described

variable

or

function

usable

by

the

succeeding

part

of

the

current

source

file.

This

declaration

does

not

replace

the

definition.

The

declaration

is

used

to

describe

the

variable

that

is

externally

defined.

An

extern

declaration

can

appear

outside

a

function

or

at

the

beginning

of

a

block.

If

the

declaration

describes

a

function

or

appears

outside

a

function

and

describes

an

object

with

external

linkage,

the

keyword

extern

is

optional.

If

you

do

not

specify

a

storage

class

specifier,

the

function

is

assumed

to

have

external

linkage.

If

a

declaration

for

an

identifier

already

exists

at

file

scope,

any

extern

declaration

of

the

same

identifier

found

within

a

block

refers

to

that

same

object.

If

no

other

declaration

for

the

identifier

exists

at

file

scope,

the

identifier

has

external

linkage.

It

is

an

error

to

include

a

declaration

for

the

same

function

with

the

storage

class

specifier

static

before

the

declaration

with

no

storage

class

specifier

because

of

the

incompatible

declarations.

Including

the

extern

storage

class

specifier

on

the

original

declaration

is

valid

and

the

function

has

internal

linkage.

When

the

GNU

C

semantics

for

inline

functions

are

desired

and

source

code

is

compiled

accordingly,

the

keyword

extern

combines

with

the

keyword

inline

to

behave

as

a

single

keyword.

Related

References

v

“The

extern

inline

keyword”

on

page

138

Initialization

You

can

initialize

any

object

with

the

extern

storage

class

specifier

at

global

scope.

The

initializer

for

an

extern

object

must

either:

Storage

Class

Specifiers

Chapter

3.

Declarations

31

v

Appear

as

part

of

the

definition

and

the

initial

value

must

be

described

by

a

constant

expression.

OR

v

Reduce

to

the

address

of

a

previously

declared

object

with

static

storage

duration.

You

may

modify

this

object

with

pointer

arithmetic.

(In

other

words,

you

may

modify

the

object

by

adding

or

subtracting

an

integral

constant

expression.)

If

you

do

not

explicitly

initialize

an

extern

variable,

its

initial

value

is

zero

of

the

appropriate

type.

Initialization

of

an

extern

object

is

completed

by

the

time

the

program

starts

running.

Storage

duration

All

extern

objects

have

static

storage

duration.

Memory

is

allocated

for

extern

objects

before

the

main

function

begins

running,

and

is

freed

when

the

program

terminates.

The

scope

of

the

variable

depends

on

the

location

of

the

declaration

in

the

program

text.

If

the

declaration

appears

within

a

block,

the

variable

has

block

scope;

otherwise,

it

has

file

scope.

Linkage

Like

the

scope,

the

linkage

of

a

variable

declared

extern

depends

on

the

placement

of

the

declaration

in

the

program

text.

If

the

variable

declaration

appears

outside

of

any

function

definition

and

has

been

declared

static

earlier

in

the

file,

the

variable

has

internal

linkage;

otherwise,

it

has

external

linkage

in

most

cases.

All

object

declarations

that

occur

outside

a

function

and

that

do

not

contain

a

storage

class

specifier

declare

identifiers

with

external

linkage.

All

function

definitions

that

do

not

specify

a

storage

class

define

functions

with

external

linkage.

Related

References

v

“External

Linkage”

on

page

5

v

“Internal

Linkage”

on

page

4

v

“static

Storage

Class

Specifier”

on

page

33

v

“Inline

Functions”

on

page

137

register

Storage

Class

Specifier

The

register

storage

class

specifier

indicates

to

the

compiler

that

the

value

of

the

object

should

reside

in

a

machine

register.

The

compiler

is

not

required

to

honor

this

request.

Because

of

the

limited

size

and

number

of

registers

available

on

most

systems,

few

variables

can

actually

be

put

in

registers.

If

the

compiler

does

not

allocate

a

machine

register

for

a

register

object,

the

object

is

treated

as

having

the

storage

class

specifier

auto.

A

register

storage

class

specifier

indicates

that

the

object,

such

as

a

loop

control

variable,

is

heavily

used

and

that

the

programmer

hopes

to

enhance

performance

by

minimizing

access

time.

An

object

having

the

register

storage

class

specifier

must

be

defined

within

a

block

or

declared

as

a

parameter

to

a

function.

Initialization

You

can

initialize

any

register

object

except

parameters.

If

you

do

not

initialize

an

automatic

object,

its

value

is

indeterminate.

If

you

provide

an

initial

value,

the

expression

representing

the

initial

value

can

be

any

valid

C

expression.

The

object

is

then

set

to

that

initial

value

each

time

the

program

block

that

contains

the

object’s

definition

is

entered.

Storage

Class

Specifiers

32

C

Language

Reference

Storage

duration

Objects

with

the

register

storage

class

specifier

have

automatic

storage

duration.

Each

time

a

block

is

entered,

storage

for

register

objects

defined

in

that

block

is

made

available.

When

the

block

is

exited,

the

objects

are

no

longer

available

for

use.

If

a

register

object

is

defined

within

a

function

that

is

recursively

invoked,

memory

is

allocated

for

the

variable

at

each

invocation

of

the

block.

Linkage

Since

a

register

object

is

treated

as

the

equivalent

to

an

object

of

the

auto

storage

class,

it

has

no

linkage.

Restrictions

v

The

register

storage

class

specifier

is

legal

only

for

variables

declared

in

a

block.

You

cannot

use

it

in

global

scope

data

declarations.

v

A

register

does

not

have

an

address.

Therefore,

you

cannot

apply

the

address

operator

(&)

to

a

register

variable.

static

Storage

Class

Specifier

The

static

storage

class

specifier

lets

you

define

objects

or

functions

with

internal

linkage,

which

means

that

each

instance

of

a

particular

identifier

represents

the

same

object

or

function

within

one

file

only.

In

addition,

objects

declared

static

have

static

storage

duration,

which

means

that

memory

for

these

objects

is

allocated

when

the

program

begins

running

and

is

freed

when

the

program

terminates.

Static

storage

duration

for

an

object

is

different

from

file

or

global

scope:

an

object

can

have

static

duration

but

local

scope.

On

the

other

hand,

the

static

storage

class

specifier

can

be

used

in

a

function

declaration

only

if

it

is

at

file

scope.

The

static

storage

class

specifier

can

only

be

applied

to

the

following

names:

v

Objects

v

Functions

v

Anonymous

unions

You

cannot

declare

any

of

the

following

as

static:

v

Type

declarations

v

Function

declarations

within

a

block

v

Function

parameters

The

keyword

static

is

the

major

mechanism

in

C

to

enforce

information

hiding.

At

the

C99

language

level,

the

static

keyword

can

be

used

in

the

declaration

of

an

array

parameter

to

a

function.

The

static

keyword

indicates

that

the

argument

passed

into

the

function

is

a

pointer

to

an

array

of

at

least

the

specified

size.

In

this

way,

the

compiler

is

informed

that

the

pointer

argument

is

never

null.

Initialization

You

initialize

a

static

object

with

a

constant

expression,

or

an

expression

that

reduces

to

the

address

of

a

previously

declared

extern

or

static

object,

possibly

modified

by

a

constant

expression.

If

you

do

not

explicitly

initialize

a

static

(or

external)

variable,

it

will

have

a

value

of

zero

of

the

appropriate

type.

Storage

Class

Specifiers

Chapter

3.

Declarations

33

More

precisely,

in

C,

v

If

the

variable

is

a

pointer

type,

it

is

initialized

to

a

null

pointer.

v

If

it

has

arithmetic

type,

it

is

initialized

to

positive

or

unsigned

zero.

v

If

it

is

an

aggregate,

the

first

named

member

is

recursively

initialized

according

to

these

rules.

v

If

it

is

a

union,

the

first

named

member

is

recursively

initialized

according

to

these

rules.

A

static

variable

in

a

block

is

initialized

only

one

time,

prior

to

program

execution,

whereas

an

auto

variable

that

has

an

initializer

is

initialized

every

time

it

comes

into

existence.

Each

time

a

recursive

function

is

called,

it

gets

a

new

set

of

auto

variables.

However,

if

the

function

has

a

static

variable,

the

same

storage

location

is

used

by

all

calls

of

the

function.

Linkage

A

declaration

of

an

object

or

file

that

contains

the

static

storage

class

specifier

and

has

file

scope,

gives

the

identifier

internal

linkage.

Each

instance

of

the

particular

identifier

therefore

represents

the

same

object

or

function

within

one

file

only.

Example

Suppose

a

static

variable

x

has

been

declared

in

function

f().

When

the

program

exits

the

scope

of

f(),

x

is

not

destroyed.

The

following

example

demonstrates

this:

#include

<stdio.h>

int

f(void)

{

static

int

x

=

0;

x++;

return

x;

}

int

main(void)

{

int

j;

for

(j

=

0;

j

<

5;

j++)

{

printf("Value

of

f():

%d\n",

f());

}

return

0;

}

The

following

is

the

output

of

the

above

example:

Value

of

f():

1

Value

of

f():

2

Value

of

f():

3

Value

of

f():

4

Value

of

f():

5

Because

x

is

a

static

variable,

it

is

not

reinitialized

to

0

on

successive

calls

to

f().

typedef

A

typedef

declaration

lets

you

define

your

own

identifiers

that

can

be

used

in

place

of

type

specifiers

such

as

int,

float,

and

double.

A

typedef

declaration

does

not

reserve

storage.

The

names

you

define

using

typedef

are

not

new

data

types,

but

synonyms

for

the

data

types

or

combinations

of

data

types

they

represent.

The

Storage

Class

Specifiers

34

C

Language

Reference

name

space

for

a

typedef

name

is

the

same

as

other

identifiers.

The

exception

to

this

rule

is

if

the

typedef

name

specifies

a

variably

modified

type.

In

this

case,

it

has

block

scope.

When

an

object

is

defined

using

a

typedef

identifier,

the

properties

of

the

defined

object

are

exactly

the

same

as

if

the

object

were

defined

by

explicitly

listing

the

data

type

associated

with

the

identifier.

Examples

of

typedef

Declarations

The

following

statements

declare

LENGTH

as

a

synonym

for

int

and

then

use

this

typedef

to

declare

length,

width,

and

height

as

integer

variables:

typedef

int

LENGTH;

LENGTH

length,

width,

height;

The

following

declarations

are

equivalent

to

the

above

declaration:

int

length,

width,

height;

Similarly,

typedef

can

be

used

to

define

a

class

type

(structure

or

union).

For

example:

typedef

struct

{

int

scruples;

int

drams;

int

grains;

}

WEIGHT;

The

structure

WEIGHT

can

then

be

used

in

the

following

declarations:

WEIGHT

chicken,

cow,

horse,

whale;

In

the

following

example,

the

type

of

yds

is

″pointer

to

function

with

no

parameter

specified,

returning

int″.

typedef

int

SCROLL();

extern

SCROLL

*yds;

In

the

following

typedefs,

the

token

struct

is

part

of

the

type

name:

the

type

of

ex1

is

struct

a;

the

type

of

ex2

is

struct

b.

typedef

struct

a

{

char

x;

}

ex1,

*ptr1;

typedef

struct

b

{

char

x;

}

ex2,

*ptr2;

Type

ex1

is

compatible

with

the

type

struct

a

and

the

type

of

the

object

pointed

to

by

ptr1.

Type

ex1

is

not

compatible

with

char,

ex2,

or

struct

b.

Type

Specifiers

Type

specifiers

indicate

the

type

of

the

object

or

function

being

declared.

The

following

are

the

available

kinds

of

type

specifiers:

v

Simple

type

specifiers

v

Enumerated

specifiers

v

const

and

volatile

qualifiers

The

term

scalar

types

collectively

refers

in

C

to

arithmetic

types

or

pointer

types.

The

term

aggregate

type

refers

to

array

and

structure

types.

Storage

Class

Specifiers

Chapter

3.

Declarations

35

Type

Names

A

data

type,

more

precisely,

a

type

name,

is

required

in

several

contexts

as

something

that

you

must

specify

without

declaring

an

object;

for

example,

when

writing

an

explicit

cast

expression

or

when

applying

the

sizeof

operator

to

a

type.

Syntactically,

the

name

of

a

data

type

is

the

same

as

a

declaration

of

a

function

or

object

of

that

type,

but

without

the

identifier.

To

read

or

write

a

type

name

correctly,

put

an

″imaginary″

identifier

within

the

syntax,

splitting

the

type

name

into

simpler

components.

For

example,

int

is

a

type

specifier,

and

it

always

appears

to

the

left

of

the

identifier

in

a

declaration.

An

imaginary

identifier

is

unnecessary

in

this

simple

case.

However,

int

*[5]

(an

array

of

5

pointers

to

int)

is

also

the

name

of

a

type.

The

type

specifier

int

*

always

appears

to

the

left

of

the

identifier,

and

the

array

subscripting

operator

always

appears

to

the

right.

In

this

case,

an

imaginary

identifier

is

helpful

in

distinguishing

the

type

specifier.

As

a

general

rule,

the

identifier

in

a

declaration

always

appears

to

the

left

of

the

subscripting

and

function

call

operators,

and

to

the

right

of

a

type

specifier,

type

qualifier,

or

indirection

operator.

Only

the

subscripting,

function

call,

and

indirection

operators

may

appear

in

a

declaration.

They

bind

according

to

normal

operator

precedence,

which

is

that

the

indirection

operator

is

of

lower

precedence

than

either

the

subscripting

or

function

call

operators,

which

have

equal

ranking

in

the

order

of

precedence.

Parentheses

may

be

used

to

control

the

binding

of

the

indirection

operator.

It

is

possible

to

have

a

type

name

within

a

type

name.

For

example,

in

a

function

type,

the

parameter

type

syntax

nests

within

the

function

type

name.

The

same

rules

of

thumb

still

apply,

recursively.

The

following

constructions

illustrate

applications

of

the

type

naming

rules.

int

*[5]

/*

array

of

5

pointers

to

int

*/

int

(*)[5]

/*

pointer

to

an

array

of

5

ints

*/

int

(*)[*]

/*

pointer

to

an

variable

length

array

of

an

unspecified

number

of

ints

*/

int

*()

/*

function

with

no

parameter

specification

returning

a

pointer

to

int

*/

int

(*)(void)

/*

function

with

no

parameters

returning

an

int

*/

int

(*const

[])(unsigned

int,

...)

/*

array

of

an

unspecified

number

of

constant

pointers

to

functions

returning

an

int

Each

function

takes

one

parameter

of

type

unsigned

int

and

an

unspecified

number

of

other

parameters

*/

The

compiler

turns

any

function

designator

into

a

pointer

to

the

function.

This

behavior

simplifies

the

syntax

of

function

calls.

int

foo(float);

/*

foo

is

a

function

designator

*/

int

(*p)(float);

/*

p

is

a

pointer

to

a

function

*/

p=&foo;

/*

legal,

but

redundant

*/

p=foo;

/*

legal:

the

compiler

turns

foo

into

a

function

pointer

*/

Type

Attributes

A

type

attribute

is

a

declaration

specifier

that

uses

the

keyword

__attribute__

and

its

accompanying

syntax

to

specify

special

properties

for

a

structure,

union,

enumeration,

or

class.

Type

attributes

are

orthogonal

extensions

to

C,

implemented

to

facilitate

porting

programs

developed

with

GNU

C.

The

syntax

of

a

type

attribute

is

of

the

general

form:

Type

Specifiers

36

C

Language

Reference

��

__attribute__

((

attribute_name

))

__attribute_name__

��

Type

Attribute

aligned

Type

attribute

aligned

allows

you

to

specify

the

alignment

of

a

structure,

class,

union,

or

enumeration.

The

syntax

and

considerations

for

specifying

alignment

factor

are

the

same

as

for

variable

attribute

aligned.

Like

variable

attribute

aligned,

type

attribute

aligned

can

only

increase

alignment.

Type

attribute

packed

is

used

to

decrease

alignment.

If

the

attribute

appears

immediately

after

the

class,

struct,

union,

or

enumeration

token

or

immediately

after

the

closing

right

curly

brace,

it

applies

to

the

type

identifier.

It

can

also

be

specified

on

a

typedef

declaration.

In

a

variable

declaration,

such

as

class

A

{}

a;

the

placement

of

the

type

attribute

can

be

confusing.

In

the

following

definitions,

the

attribute

applies

to

A:

struct

__attribute__((__aligned__(8)))

A

{};

struct

A

{}

__attribute__((__aligned__(8)))

;

struct

__attribute__((__aligned__(8)))

A

{}

a;

struct

A

{}

__attribute__((__aligned__(8)))

a;

typedef

struct

__attribute__((__aligned__(8)))

A

{}

a;

typedef

struct

A

{}

__attribute__((__aligned__(8)))

a;

In

the

following

definitions,

the

attribute

applies

to

a:

__attribute__((__aligned__(8)))

struct

A

{}

a;

struct

A

{}

const

__attribute__((__aligned__(8)))

a;

__attribute__((__aligned__(8)))

typedef

struct

A

{}

a;

typedef

__attribute__((__aligned__(8)))

struct

A

{}

a;

typedef

struct

A

{}

const

__attribute__((__aligned__(8)))

a;

typedef

struct

A

{}

a

__attribute__((__aligned__(8)));

Type

Attribute

packed

Specifying

the

packed

type

attribute

on

a

struct,

class,

union,

or

enumeration

type

indicates

that

the

minimum

amount

of

required

memory

is

to

be

used

for

that

type.

Placement

of

type

attribute

packed

is

the

same

as

for

type

attribute

aligned,

except

that

type

attribute

packed

is

silently

ignored

on

a

typedef

declaration.

Type

Attribute

transparent_union

2000C

2000AIX

The

transparent_union

attribute

applied

to

a

union

definition

or

a

union

typedef

indicates

the

union

can

be

used

as

a

transparent

union.

Whenever

a

transparent

union

is

the

type

of

a

function

parameter

and

that

function

is

called,

the

transparent

union

can

accept

an

argument

of

any

type

that

matches

that

of

one

of

its

members

without

an

explicit

cast.

Arguments

to

this

function

parameter

are

passed

to

the

transparent

union,

using

the

calling

convention

of

the

first

member

of

the

union

type.

Because

of

this,

all

members

of

the

union

must

have

the

same

machine

representation.

Transparent

unions

are

useful

in

library

functions

that

use

multiple

interfaces

to

resolve

issues

of

compatibility.

The

language

feature

is

an

orthogonal

extension

to

C89

and

C99,

implemented

to

facilitate

porting

programs

originally

developed

with

GNU

C.

The

type

attribute

must

follow

the

closing

brace

of

the

union

or

typedef

definition.

Type

Specifiers

Chapter

3.

Declarations

37

union

u_t

{

int

a;

short

b;

char

c;

}

__attribute__((__transparent_union__))

U;

typedef

union

{

int

*iptr;

union

u2_t

*u2ptr;

}

status_ptr_t

__attribute__((__transparent_union__));

Type

attribute

transparent_union

can

be

applied

to

anonymous

unions

with

tag

names.

When

type

attribute

transparent_union

is

applied

to

the

outer

union

of

a

nested

union,

the

size

of

the

inner

union

(that

is,

its

largest

member)

is

used

to

determine

if

it

has

the

same

machine

representation

as

the

other

members

of

the

outer

union.

For

example,

union

u_t

{

union

u2_t

{

char

a;

short

b;

char

c;

char

d;

};

int

a;

}

__attribute__((__transparent_union__));

attribute

transparent_union

is

ignored

because

the

first

member

of

union

u_t,

which

is

itself

a

union,

has

a

machine

representation

of

2

bytes,

whereas

the

other

member

of

union

u_t

is

of

type

int,

which

has

a

machine

representation

of

4

bytes.

The

same

rationale

applies

to

members

of

a

union

that

are

structures.

When

a

member

of

a

union

to

which

type

attribute

transparent_union

has

been

applied

is

a

struct,

the

machine

representation

of

the

entire

struct

is

considered,

rather

than

members.

Restrictions

The

union

must

be

a

complete

union

type

All

members

of

the

union

must

have

the

same

machine

representation

as

the

first

member

of

the

union.

This

means

that

all

members

must

be

representable

by

the

same

amount

memory

as

the

first

member

of

the

union.

The

machine

representation

of

the

first

member

represents

the

maximum

memory

size

for

any

remaining

union

members.

For

instance,

if

the

first

member

of

a

union

to

which

type

attribute

transparent_union

has

been

applied

is

of

type

int,

then

all

following

members

must

be

representable

by

at

most

4

bytes.

Members

that

are

representable

by

1,

2,

or

4

bytes

are

considered

valid

for

this

transparent

union.

The

first

member

of

the

union

cannot

be

a

floating-point

type

(float,

double,

float

_Complex,

or

double

_Complex).

However,

float

_Complex

and

double

_Complex

types

can

be

members

of

a

transparent

union,

as

long

as

they

are

not

the

first

member.

The

restriction

that

all

members

of

the

transparent

union

have

the

same

machine

representation

as

the

first

member

still

applies.

Examples

Type

Specifiers

38

C

Language

Reference

This

example

shows

how

attribute

transparent_union

can

be

applied

to

a

function

parameter

declaration:

void

foo(

union

u_t

{

int

a;

short

b;

char

c;

}

__attribute__((transparent_union))

uu

)

{

printf("uu.b

is

%d\n",uu.b);

}

int

main()

{

short

s

=

99;

foo(s);

return

0;

}

This

example

shows

how

Complex

types

can

be

members

of

a

transparent

union:

union

u_t

{

int

i[2];

//

This

member

must

has

a

machine

representation

of

8

bytes.

float

_Complex

cf;

}

__attribute__((__transparent_union__))

U;

void

foo(union

u_t

uu)

{

printf("uu.cf

is

%f\n",uu.cf);

}

int

main()

{

float

_Complex

my_cf

=

5.0f

+

1.0f

*

__I;

foo(my_cf);

return

0;

}

Compatible

Types

The

concept

of

compatible

types

combines

the

notions

of

being

able

to

use

two

types

together

without

modification

(as

in

an

assignment

expression),

being

able

to

substitute

one

for

the

other

without

modification,

and

uniting

them

into

a

composite

type.

A

composite

type

is

that

which

results

from

combining

two

compatible

types.

Determining

the

resultant

composite

type

for

two

compatible

types

is

similar

to

following

the

usual

binary

conversions

of

integral

types

when

they

are

combined

with

some

arithmetic

operators.

Obviously,

two

types

that

are

the

same

are

compatible;

their

composite

type

is

the

same

type.

Less

obvious

are

the

rules

governing

type

compatibility

of

non-identical

types,

function

prototypes,

and

type-qualified

types.

Names

in

typedef

definitions

are

only

synonyms

for

types,

and

so

typedef

names

can

possibly

indicate

identical

and

therefore

compatible

types.

Pointers,

functions,

and

arrays

with

certain

properties

can

also

be

compatible

types.

Identical

Types

The

presence

of

type

specifiers

in

various

combinations

for

arithmetic

types

may

or

may

not

indicate

different

types.

For

example,

the

type

signed

int

is

the

same

as

int,

except

when

used

as

the

types

of

bit

fields;

but

char,

signed

char,

and

unsigned

char

are

different

types.

The

presence

of

a

type

qualifier

changes

the

type.

That

is,

const

int

is

not

the

same

type

as

int,

and

therefore

the

two

types

are

not

compatible.

Type

Specifiers

Chapter

3.

Declarations

39

Two

arithmetic

types

are

compatible

only

if

they

are

the

same

type.

Compatibility

Across

Separately

Compiled

Source

Files

The

definition

of

a

structure,

union,

or

enumeration

results

in

a

new

type.

When

the

definitions

for

two

structures,

unions,

or

enumerations

are

defined

in

separate

source

files,

each

file

can

theoretically

contain

a

different

definition

for

an

object

of

that

type

with

the

same

name.

The

two

declarations

must

be

compatible,

or

the

run

time

behavior

of

the

program

is

undefined.

Therefore,

the

compatibility

rules

are

more

restrictive

and

specific

than

those

for

compatibility

within

the

same

source

file.

For

structure,

union,

and

enumeration

types

defined

in

separately

compiled

files,

the

composite

type

is

the

type

in

the

current

source

file.

The

requirements

for

compatibility

between

two

structure,

union,

or

enumerated

types

declared

in

separate

source

files

are

as

follows:

v

If

one

is

declared

with

a

tag,

the

other

must

also

be

declared

with

the

same

tag.

v

If

both

are

completed

types,

their

members

must

correspond

exactly

in

number,

be

declared

with

compatible

types,

and

have

matching

names.

For

enumerations,

corresponding

members

must

also

have

the

same

values.

For

structures

and

unions,

the

following

additional

requirements

must

be

met

for

type

compatibility:

v

Corresponding

members

must

be

declared

in

the

same

order

(applies

to

structures

only).

v

Corresponding

bit

fields

must

have

the

same

widths.

Simple

Type

Specifiers

A

simple

type

specifier

either

specifies

a

(previously

declared)

user-defined

type

or

a

fundamental

type.

A

fundamental

type

is

a

one

that

is

built

into

the

language.

The

following

outline

shows

the

categories

of

fundamental

types:

v

Arithmetic

types

–

Integral

types

-

char

-

wchar_t

-

Signed

integer

types

v

signed

char

v

short

int

v

int

v

long

int

v

long

long

int
-

Unsigned

integer

types

v

_Bool

v

unsigned

char

v

unsigned

short

int

v

unsigned

int

v

unsigned

long

int

v

unsigned

long

long

int
–

Floating-point

types

-

float

-

double

-

long

double
v

void

Type

Specifiers

40

C

Language

Reference

The

floating

point

types

are

referred

to

as

real

floating

types

when

there

is

a

need

to

distinguish

them

from

the

complex

types

float

_Complex,

double

_Complex,

and

long

double

_Complex.

Collectively,

the

real

floating

and

complex

types

are

called

the

floating

types.

Boolean

Variables

A

Boolean

variable

can

be

used

to

hold

the

integer

values

0

or

1.

To

declare

a

Boolean

variable

in

C,

use

the

bool

macro,

which

is

defined

in

the

header

file

<stdbool.h>.

A

Boolean

variable

may

not

be

further

qualified

by

the

specifiers

signed,

unsigned,

short,

or

long.

A

Boolean

variable

can

be

used

to

hold

the

integer

values

0

or

1.

To

declare

a

Boolean

variable,

use

the

bool

macro,

which

is

defined

in

the

header

file

<stdbool.h>.

A

Boolean

variable

may

not

be

further

qualified

by

the

specifiers

signed,

unsigned,

short,

or

long.

The

Boolean

type

is

unsigned

and

has

the

lowest

ranking

in

its

category

of

standard

unsigned

integer

types.

In

simple

assignments,

if

the

left

operand

is

a

Boolean

type,

then

the

right

operand

must

be

either

an

arithmetic

type

or

a

pointer.

An

object

declared

as

a

Boolean

type

uses

1

byte

of

storage

space,

which

is

large

enough

to

hold

the

values

0

or

1.

In

C,

a

Boolean

type

can

be

used

as

a

bit

field

type.

If

a

nonzero-width

bit

field

of

Boolean

type

holds

the

value

0

or

1,

then

the

value

of

the

bit-field

compares

equal

to

0

or

1,

respectively.

char

and

wchar_t

Type

Specifiers

The

char

specifier

has

the

following

syntax:

��

unsigned

signed

char

��

The

char

specifier

is

an

integral

type.

A

char

has

enough

storage

to

represent

a

character

from

the

basic

character

set.

The

amount

of

storage

allocated

for

a

char

is

implementation-dependent.

You

initialize

a

variable

of

type

char

with

a

character

literal

(consisting

of

one

character)

or

with

an

expression

that

evaluates

to

an

integer.

Use

signed

char

or

unsigned

char

to

declare

numeric

variables

that

occupy

a

single

byte.

Examples

of

the

char

Type

Specifier

The

following

example

defines

the

identifier

end_of_string

as

a

constant

object

of

type

char

having

the

initial

value

\0

(the

null

character):

const

char

end_of_string

=

’\0’;

The

following

example

defines

the

unsigned

char

variable

switches

as

having

the

initial

value

3:

unsigned

char

switches

=

3;

The

following

example

defines

string_pointer

as

a

pointer

to

a

character:

Type

Specifiers

Chapter

3.

Declarations

41

char

*string_pointer;

The

following

example

defines

name

as

a

pointer

to

a

character.

After

initialization,

name

points

to

the

first

letter

in

the

character

string

"Johnny":

char

*name

=

"Johnny";

The

following

example

defines

a

one-dimensional

array

of

pointers

to

characters.

The

array

has

three

elements.

Initially

they

are

a

pointer

to

the

string

"Venus",

a

pointer

to

"Jupiter",

and

a

pointer

to

"Saturn":

static

char

*planets[

]

=

{

"Venus",

"Jupiter",

"Saturn"

};

The

wchar_t

Type

Specifier:

The

wchar_t

type

specifier

is

an

integral

type

that

has

enough

storage

to

represent

a

wide

character

literal.

(A

wide

character

literal

is

a

character

literal

that

is

prefixed

with

the

letter

L,

for

example

L’x’)

Floating-Point

Variables

There

are

three

types

of

floating-point

variables:

v

float

v

double

v

long

double

To

declare

a

data

object

that

is

a

floating-point

type,

use

the

following

float

specifier:

��

float

double

long

double

��

The

declarator

for

a

simple

floating-point

declaration

is

an

identifier.

Initialize

a

simple

floating-point

variable

with

a

float

constant

or

with

a

variable

or

expression

that

evaluates

to

an

integer

or

floating-point

number.

The

storage

class

of

a

variable

determines

how

you

initialize

the

variable.

Examples

of

Floating-Point

Data

Types

The

following

example

defines

the

identifier

pi

as

an

object

of

type

double:

double

pi;

The

following

example

defines

the

float

variable

real_number

with

the

initial

value

100.55:

static

float

real_number

=

100.55f;

Note:

If

you

do

not

add

the

f

suffix

to

a

floating-point

literal,

that

number

will

be

of

type

double.

If

you

initialize

an

object

of

type

float

with

an

object

of

type

double,

the

compiler

will

implicitly

convert

the

object

of

type

double

to

an

object

of

type

float.

The

following

example

defines

the

float

variable

float_var

with

the

initial

value

0.0143:

float

float_var

=

1.43e-2f;

The

following

example

declares

the

long

double

variable

maximum:

extern

long

double

maximum;

Type

Specifiers

42

C

Language

Reference

The

following

example

defines

the

array

table

with

20

elements

of

type

double:

double

table[20];

Related

References

v

“Floating-Point

Literals”

on

page

18

v

“Assignment

Expressions”

on

page

111

Integer

Variables

Integer

variables

fall

into

the

following

categories:

v

integral

types

–

char

–

wchar_t

–

signed

integer

types

-

signed

char

-

short

int

-

int

-

long

int

-

long

long

int
–

unsigned

integer

types

-

unsigned

char

-

unsigned

short

int

-

unsigned

int

-

unsigned

long

int

-

unsigned

long

long

int

The

default

integer

type

for

a

bit

field

is

unsigned.

The

amount

of

storage

allocated

for

integer

data

is

implementation-dependent.

The

unsigned

prefix

indicates

that

the

object

is

a

nonnegative

integer.

Each

unsigned

type

provides

the

same

size

storage

as

its

signed

equivalent.

For

example,

int

reserves

the

same

storage

as

unsigned

int.

Because

a

signed

type

reserves

a

sign

bit,

an

unsigned

type

can

hold

a

larger

positive

integer

value

than

the

equivalent

signed

type.

The

declarator

for

a

simple

integer

definition

or

declaration

is

an

identifier.

You

can

initialize

a

simple

integer

definition

with

an

integer

constant

or

with

an

expression

that

evaluates

to

a

value

that

can

be

assigned

to

an

integer.

The

storage

class

of

a

variable

determines

how

you

can

initialize

the

variable.

Examples

of

Integer

Data

Types

The

following

example

defines

the

short

int

variable

flag:

short

int

flag;

The

following

example

defines

the

int

variable

result:

int

result;

The

following

example

defines

the

unsigned

long

int

variable

ss_number

as

having

the

initial

value

438888834

:

unsigned

long

ss_number

=

438888834ul;

Type

Specifiers

Chapter

3.

Declarations

43

void

Type

The

void

data

type

always

represents

an

empty

set

of

values.

The

only

object

that

can

be

declared

with

the

type

specifier

void

is

a

pointer.

When

a

function

does

not

return

a

value,

you

should

use

void

as

the

type

specifier

in

the

function

definition

and

declaration.

An

argument

list

for

a

function

taking

no

arguments

is

void.

You

cannot

declare

a

variable

of

type

void,

but

you

can

explicitly

convert

any

expression

to

type

void.

The

resulting

expression

can

only

be

used

as

one

of

the

following:

v

An

expression

statement

v

The

left

operand

of

a

comma

expression

v

The

second

or

third

operand

in

a

conditional

expression.

Example

of

void

Type

In

the

following

example,

the

function

find_max

is

declared

as

having

type

void.

Note:

The

use

of

the

sizeof

operator

in

the

line

find_max(numbers,

(sizeof(numbers)

/

sizeof(numbers[0])));

is

a

standard

method

of

determining

the

number

of

elements

in

an

array.

/**

**

Example

of

void

type

**/

#include

<stdio.h>

/*

declaration

of

function

find_max

*/

extern

void

find_max(int

x[

],

int

j);

int

main(void)

{

static

int

numbers[

]

=

{

99,

54,

-102,

89};

find_max(numbers,

(sizeof(numbers)

/

sizeof(numbers[0])));

return(0);

}

void

find_max(int

x[

],

int

j)

{

/*

begin

definition

of

function

find_max

*/

int

i,

temp

=

x[0];

for

(i

=

1;

i

<

j;

i++)

{

if

(x[i]

>

temp)

temp

=

x[i];

}

printf("max

number

=

%d\n",

temp);

}

/*

end

definition

of

function

find_max

*/

Compound

Types

Standard

C

does

not

formally

define

the

concept

of

a

compound

type.

However,

the

notion

of

a

compound

type

exists

in

C.

You

are

considered

to

be

using

a

compound

type

when

you

construct

any

of

the

following:

v

An

array

of

objects

of

a

given

type

Type

Specifiers

44

C

Language

Reference

v

Any

functions,

which

have

parameters

of

a

given

type

and

return

void

or

objects

of

a

given

type

v

A

pointer

to

void,

to

an

object,

or

to

a

function

of

a

given

type

v

A

union

v

An

enumeration

Structures

A

structure

contains

an

ordered

group

of

data

objects.

Unlike

the

elements

of

an

array,

the

data

objects

within

a

structure

can

have

varied

data

types.

Each

data

object

in

a

structure

is

a

member

or

field.

A

member

of

a

structure

may

have

any

object

type

other

than

a

variably

modified

type.

Every

member

except

the

last

must

be

a

complete

type.

As

a

special

case,

the

last

element

of

a

structure

with

more

than

one

member

may

have

an

incomplete

array

type,

which

is

called

a

flexible

array

member.

Use

structures

to

group

logically

related

objects.

For

example,

to

allocate

storage

for

the

components

of

one

address,

define

the

following

variables:

int

street_no;

char

*street_name;

char

*city;

char

*prov;

char

*postal_code;

To

allocate

storage

for

more

than

one

address,

group

the

components

of

each

address

by

defining

a

structure

data

type

and

as

many

variables

as

you

need

to

have

the

structure

data

type.

In

the

following

example,

line

int

street_no;

through

to

char

*postal_code;

declare

the

structure

tag

address:

struct

address

{

int

street_no;

char

*street_name;

char

*city;

char

*prov;

char

*postal_code;

};

struct

address

perm_address;

struct

address

temp_address;

struct

address

*p_perm_address

=

&perm_address;

The

variables

perm_address

and

temp_address

are

instances

of

the

structure

data

type

address.

Both

contain

the

members

described

in

the

declaration

of

address.

The

pointer

p_perm_address

points

to

a

structure

of

address

and

is

initialized

to

point

to

perm_address.

Refer

to

a

member

of

a

structure

by

specifying

the

structure

variable

name

with

the

dot

operator

(.)

or

a

pointer

with

the

arrow

operator

(->)

and

the

member

name.

For

example,

both

of

the

following:

perm_address.prov

=

"Ontario";

p_perm_address

->

prov

=

"Ontario";

assign

a

pointer

to

the

string

"Ontario"

to

the

pointer

prov

that

is

in

the

structure

perm_address.

Type

Specifiers

Chapter

3.

Declarations

45

All

references

to

structures

must

be

fully

qualified.

In

the

example,

you

cannot

reference

the

fourth

field

by

prov

alone.

You

must

reference

this

field

by

perm_address.prov.

Structures

with

identical

members

but

different

names

are

not

compatible

and

cannot

be

assigned

to

each

other.

Structures

are

not

intended

to

conserve

storage.

If

you

need

direct

control

of

byte

mapping,

use

pointers.

Compatible

Structures

Each

structure

definition

creates

a

new

structure

type

that

is

neither

the

same

as

nor

compatible

with

any

other

structure

type

in

the

same

source

file.

However,

a

type

specifier

that

is

a

reference

to

a

previously

defined

structure

type

is

the

same

type.

The

structure

tag

associates

the

reference

with

the

definition,

and

effectively

acts

as

the

type

name.

To

illustrate

this,

only

the

types

of

structures

j

and

k

are

the

same.

struct

{

int

a;

int

b;

}

h;

struct

{

int

a;

int

b;

}

i;

struct

S

{

int

a;

int

b;

}

j;

struct

S

k;

Declaring

and

Defining

a

Structure:

A

structure

type

definition

describes

the

members

that

are

part

of

the

structure.

It

contains

the

struct

keyword

followed

by

an

optional

identifier

(the

structure

tag)

and

a

brace-enclosed

list

of

members.

A

declaration

of

a

structure

data

type

has

the

form:

��

struct

�

identifier

{

member

;

}

identifier

��

The

keyword

struct

followed

by

an

identifier

(tag)

gives

a

name

to

the

data

type.

If

you

do

not

provide

a

tag

name,

you

must

put

all

variable

definitions

that

refer

to

it

within

the

declaration

of

the

data

type.

A

structure

declaration

has

the

same

form

as

a

structure

definition

except

the

declaration

does

not

have

a

brace-enclosed

list

of

members.

A

structure

definition

has

the

same

form

as

the

declaration

of

that

structure

data

type,

but

ends

with

a

semicolon.

Defining

Structure

Members

The

list

of

members

provides

the

structure

data

type

with

a

description

of

the

values

that

can

be

stored

in

the

structure.

In

C,

a

structure

member

may

be

of

any

type

except

″function

returning

T″

(for

some

type

T),

any

incomplete

type,

any

variably

modified

type,

and

void.

Because

incomplete

types

are

not

allowed

as

a

structure

member,

a

structure

type

may

not

contain

an

instance

of

itself

as

a

member,

but

is

allowed

to

contain

a

pointer

to

an

instance

of

itself.

The

definition

of

a

structure

member

has

the

form

of

a

variable

declaration.

The

names

of

structure

members

must

be

distinct

within

a

single

structure,

but

the

same

member

name

may

be

used

in

another

structure

type

that

is

defined

within

the

same

scope,

and

may

even

be

the

same

as

a

variable,

function,

or

type

name.

A

Type

Specifiers

46

C

Language

Reference

member

that

does

not

represent

a

bit

field

can

be

of

any

data

type,

which

can

be

qualified

with

either

of

the

type

qualifiers

volatile

or

const.

The

result

is

an

lvalue.

However,

a

bit

field

without

a

type

qualifier

can

be

declared

as

a

structure

member.

If

the

bit

field

is

unnamed,

it

does

not

participate

in

initialization,

and

will

have

indeterminate

value

after

initialization.

To

allow

proper

alignment

of

components,

holes

or

padding

may

appear

between

any

consecutive

members

in

the

structure

layout.

Flexible

Array

Members

The

last

element

of

a

structure

with

more

than

one

named

member

may

be

an

incomplete

array

type,

referred

to

as

a

flexible

array

member.

A

flexible

array

member

is

an

element

of

a

structure

with

more

than

one

named

member.

The

flexible

array

member

must

be

the

last

element

of

such

a

structure

and

must

be

of

an

incomplete

array

type.

��

array_identifier[

]

��

For

example,

b

is

a

flexible

array

member

of

struct

foo.

struct

foo{

int

a;

char

b[];

};

The

size

of

struct

foo

is

4.

struct

foo

cannot

be

a

member

of

another

struct

or

array.

When

the

array

subscript

is

zero,

the

array

member

is

considered

a

zero-extent

array.

��

array_identifier[0]

��

If

in

the

previous

example

b

is

declared

as

a

zero-extent

array,

the

size

of

struct

foo

is

still

4,

but

struct

foo

is

allowed

to

be

a

member

of

another

struct

or

array,

as

in

the

following

example.

struct

bar{

struct

foo

zearray;

};

Usually

a

flexible

array

member

is

ignored.

However,

it

is

recognized

in

two

cases:

v

Suppose

that

an

array

of

unspecified

length

replaces

the

flexible

array

member.

The

flexible

array

member

of

the

original

structure

is

recognized

when

the

size

of

the

original

structure

is

equal

to

the

offset

of

the

last

element

of

the

structure

with

the

replacement

array.

v

When

the

dot

or

arrow

operator

is

used

to

represent

the

flexible

array

member.

In

the

second

case,

the

behavior

is

as

if

that

member

were

replaced

with

the

longest

array

that

would

not

make

the

structure

larger

than

the

object

being

accessed.

The

offset

of

the

array

remains

the

same

as

that

of

the

flexible

array

member.

If

the

replacement

array

would

have

no

elements,

the

behavior

is

as

if

it

had

one

element,

but

that

element

may

not

be

accessed,

nor

can

a

pointer

one

past

it

be

generated.

To

illustrate,

d

is

the

flexible

array

member

of

the

structure

struct

s.

Type

Specifiers

Chapter

3.

Declarations

47

//

Assuming

the

same

alignment

for

all

array

members,

struct

s

{

int

n;

double

d[];

};

struct

ss

{

int

n;

double

d[1];

};

The

expressions

offsetof(struct

s,

d)

and

offsetof(struct

ss,

d)

have

the

same

value:

sizeof(struct

s).

Defining

a

Structure

Variable:

A

structure

variable

definition

contains

an

optional

storage

class

keyword,

the

struct

keyword,

a

structure

tag,

a

declarator,

and

an

optional

identifier.

The

structure

tag

indicates

the

data

type

of

the

structure

variable.

You

can

declare

structures

having

any

storage

class.

Structures

declared

with

the

register

storage

class

specifier

are

treated

as

automatic

structures.

Initializing

Structures:

An

initializer

for

a

structure

is

a

brace-enclosed

comma-separated

list

of

values.

An

initializer

is

preceded

by

an

equal

sign

(=).

In

the

absence

of

designations,

memory

for

structure

members

is

allocated

in

the

order

declared,

and

memory

address

are

assigned

in

increasing

order,

with

the

first

component

starting

at

the

beginning

address

of

the

structure

name

itself.

You

do

not

have

to

initialize

all

members

of

a

structure.

The

default

initializer

for

a

structure

with

static

storage

is

the

recursive

default

for

each

component;

a

structure

with

automatic

storage

has

none.

Named

members

of

a

structure

can

be

initialized

in

any

order;

any

named

member

of

a

union

can

be

initialized,

even

if

it

is

not

the

first

member.

A

designator

identifies

the

structure

or

union

member

to

be

initialized.

The

designator

for

a

structure

or

union

member

consists

of

a

dot

and

its

identifier

(.fieldname).

A

designator

list

is

a

combination

of

one

or

more

designators

for

any

of

the

aggregate

types.

A

designation

is

a

designator

list

followed

by

an

equal

sign

(=).

A

designator

identifies

a

first

subobject

of

the

current

object,

which

at

the

beginning

of

the

initialization

is

the

structure

itself.

After

initializing

the

first

subobject,

the

next

subobject

becomes

the

current

object,

and

its

first

subobject

is

initialized;

that

is,

initialization

proceeds

in

forward

order,

and

any

previous

subobject

initializations

are

overridden.

The

initializer

for

an

automatic

variable

of

a

structure

or

any

aggregate

type

can

be

a

constant

or

non-constant

expression.

Allowing

an

initializer

to

be

a

constant

or

non-constant

expression

is

a

C99

language

feature.

The

following

declaration

of

a

structure

is

a

definition

that

contains

designators,

which

remove

some

of

the

ambiguity

about

which

subobject

will

be

initialized

by

providing

an

explicit

initialization.

The

following

declaration

defines

an

array

with

two

element

structures.

In

the

excerpt

below,

[0].a

and

[1].a[0]

are

designator

lists.

struct

{

int

a[5],

b;

}

game[]

=

{

[0].a

=

{

1

},

[1].a[0]

=

2

};

/*

game[0].a[0]

is

1,

game[1].a[0]

is

2,

and

all

other

elements

are

zero.

*/

The

declaration

syntax

uses

braces

to

indicate

initializer

lists,

yet

is

referred

to

as

a

bracketed

form.

A

fully

bracketed

form

of

a

declaration

is

less

likely

to

be

misunderstood

than

a

terser

form.

The

following

definition

accomplishes

the

same

thing,

is

legal

and

shorter,

but

inconsistently

bracketed,

and

could

be

misleading.

Neither

b

structure

member

of

the

two

struct

game

objects

is

initialized

to

2.

Type

Specifiers

48

C

Language

Reference

struct

{

int

a[5],

b;

}

game[]

=

{

{

1

},

2

};

/*

game[0].a[0]

is

1,

game[1].a[0]

is

2,

and

all

other

elements

are

zero.

*/

Unnamed

structure

or

union

members

do

not

participate

in

initialization

and

have

indeterminate

value

after

initialization.

Example

The

following

definition

shows

a

completely

initialized

structure:

struct

address

{

int

street_no;

char

*street_name;

char

*city;

char

*prov;

char

*postal_code;

};

static

struct

address

perm_address

=

{

3,

"Savona

Dr.",

"Dundas",

"Ontario",

"L4B

2A1"};

The

values

of

perm_address

are:

Member

Value

perm_address.street_no

3

perm_address.street_name

address

of

string

"Savona

Dr."

perm_address.city

address

of

string

"Dundas"

perm_address.prov

address

of

string

"Ontario"

perm_address.postal_code

address

of

string

"L4B

2A1"

The

following

definition

shows

a

partially

initialized

structure:

struct

address

{

int

street_no;

char

*street_name;

char

*city;

char

*prov;

char

*postal_code;

};

struct

address

temp_address

=

{

44,

"Knyvet

Ave.",

"Hamilton",

"Ontario"

};

The

values

of

temp_address

are:

Member

Value

temp_address.street_no

44

temp_address.street_name

address

of

string

"Knyvet

Ave."

temp_address.city

address

of

string

"Hamilton"

temp_address.prov

address

of

string

"Ontario"

temp_address.postal_code

value

depends

on

the

storage

class.

Note:

The

initial

value

of

uninitialized

structure

members

like

temp_address.postal_code

depends

on

the

storage

class

associated

with

the

member.

Declaring

Structure

Types

and

Variables

in

the

Same

Statement:

To

define

a

structure

type

and

a

structure

variable

in

one

statement,

put

a

declarator

and

an

optional

initializer

after

the

type

definition.

To

specify

a

storage

class

specifier

for

the

variable,

you

must

put

the

storage

class

specifier

at

the

beginning

of

the

statement.

Type

Specifiers

Chapter

3.

Declarations

49

For

example:

static

struct

{

int

street_no;

char

*street_name;

char

*city;

char

*prov;

char

*postal_code;

}

perm_address,

temp_address;

Because

this

example

does

not

name

the

structure

data

type,

perm_address

and

temp_address

are

the

only

structure

variables

that

will

have

this

data

type.

Putting

an

identifier

after

struct,

lets

you

make

additional

variable

definitions

of

this

data

type

later

in

the

program.

The

structure

type

(or

tag)

cannot

have

the

volatile

qualifier,

but

a

member

or

a

structure

variable

can

be

defined

as

having

the

volatile

qualifier.

For

example:

static

struct

class1

{

char

descript[20];

volatile

long

code;

short

complete;

}

volatile

file1,

file2;

struct

class1

subfile;

This

example

qualifies

the

structures

file1

and

file2,

and

the

structure

member

subfile.code

as

volatile.

Alignment

of

Structures:

Structures

are

aligned

according

to

the

setting

of

the

align

compiler

option,

which

specifies

the

alignment

rules

the

compiler

is

to

use

when

laying

out

the

storage

of

structures

and

unions.

Each

of

the

suboptions

affects

the

alignment

in

a

different

way.

The

mapping

of

a

structure

is

based

on

the

alignment

mode

in

effect

at

the

opening

brace

of

the

structure

definition.

Structure

members

are

aligned

by

type.

In

addition

to

the

alignment

mode

set

by

the

align

compiler

option,

a

#pragma

options

align

directive

can

be

used

to

set

the

alignment

mode.

Because

the

align

option

in

effect

at

the

opening

brace

of

the

structure

determines

how

the

structure

is

mapped,

a

#pragma

options

align

nested

within

a

structure

will

only

effect

the

definitions

of

structures

that

have

the

opening

brace

following

the

pragma.

Structures

and

unions

with

different

alignments

can

be

nested.

Each

structure

is

laid

out

using

the

alignment

applicable

to

it.

The

start

position

of

the

nested

structure

is

determined

by

the

alignment

rule

in

effect

for

the

structure

in

which

it

is

nested.

Structures

and

unions

with

identical

members

but

using

different

alignments

are

not

type-compatible

and

cannot

be

assigned

to

each

other.

Related

References

v

For

a

full

discussion

of

the

align

compiler

option

and

the

#pragmas

affecting

alignment,

see

XL

C

Compiler

Reference:

Data

Mapping

and

Storage

Declaring

and

Using

Bit

Fields

in

Structures:

C

allows

integer

members

to

be

stored

into

memory

spaces

smaller

than

the

compiler

would

ordinarily

allow.

These

space-saving

structure

members

are

called

bit

fields,

and

their

width

in

bits

Type

Specifiers

50

C

Language

Reference

can

be

explicitly

declared.

Bit

fields

are

used

in

programs

that

must

force

a

data

structure

to

correspond

to

a

fixed

hardware

representation

and

are

unlikely

to

be

portable.

The

syntax

for

declaring

a

bit

field

is

as

follows:

��

type_specifier

:

declarator

constant_expression

;

��

A

bit

field

declaration

contains

a

type

specifier

followed

by

an

optional

declarator,

a

colon,

a

constant

integer

expression

that

indicates

the

field

width

in

bits,

and

a

semicolon.

A

bit

field

declaration

may

not

use

either

of

the

type

qualifiers,

const

or

volatile.

The

C99

standard

requires

the

allowable

data

types

for

a

bit

field

to

include

qualified

and

unqualified

_Bool,

signed

int,

and

unsigned

int.

In

addition,

this

implementation

supports

the

following

types.

v

int

v

short,

signed

short,

unsigned

short

v

char,

signed

char,

unsigned

char

v

long,

signed

long,

unsigned

long

v

long

long,

signed

long

long,

unsigned

long

long

In

all

implementations,

the

default

integer

type

for

a

bit

field

is

unsigned.

When

you

assign

a

value

that

is

out

of

range

to

a

bit

field,

the

low-order

bit

pattern

is

preserved

and

the

appropriate

bits

are

assigned.

Bit

fields

with

a

length

of

0

must

be

unnamed.

Unnamed

bit

fields

cannot

be

referenced

or

initialized.

A

zero-width

bit

field

can

cause

the

next

field

to

be

aligned

on

the

next

container

boundary

where

the

container

is

the

same

size

as

the

underlying

type

of

the

bit

field.

Bit

fields

are

also

subject

to

the

align

compiler

option.

Each

of

the

align

suboptions

gives

a

different

set

of

alignment

properties

to

the

bit

fields.

For

a

full

discussion

of

the

align

compiler

option

and

the

#pragmas

affecting

alignment,

see

XL

C

Compiler

Reference.

2000AIX

2000Linux

2000C

The

maximum

bit

field

length

is

64

bits.

For

portability,

do

not

use

bit

fields

greater

than

32

bits

in

size.

The

following

restrictions

apply

to

bit

fields.

You

cannot:

v

Define

an

array

of

bit

fields

v

Take

the

address

of

a

bit

field

v

Have

a

pointer

to

a

bit

field

v

Have

a

reference

to

a

bit

field

The

following

structure

has

three

bit-field

members

kingdom,

phylum,

and

genus,

occupying

12,

6,

and

2

bits

respectively:

struct

taxonomy

{

int

kingdom

:

12;

int

phylum

:

6;

int

genus

:

2;

};

Type

Specifiers

Chapter

3.

Declarations

51

Alignment

of

Bit

Fields

If

a

series

of

bit

fields

does

not

add

up

to

the

size

of

an

int,

padding

can

take

place.

The

amount

of

padding

is

determined

by

the

alignment

characteristics

of

the

members

of

the

structure.

The

following

example

demonstrates

padding.

Suppose

that

an

int

occupies

4

bytes.

The

example

declares

the

identifier

kitchen

to

be

of

type

struct

on_off:

struct

on_off

{

unsigned

light

:

1;

unsigned

toaster

:

1;

int

count;

/*

4

bytes

*/

unsigned

ac

:

4;

unsigned

:

4;

unsigned

clock

:

1;

unsigned

:

0;

unsigned

flag

:

1;

}

kitchen

;

The

structure

kitchen

contains

eight

members

totalling

16

bytes.

The

following

table

describes

the

storage

that

each

member

occupies:

Member

Name

Storage

Occupied

light

1

bit

toaster

1

bit

(padding

—

30

bits)

To

the

next

int

boundary

count

The

size

of

an

int

(4

bytes)

ac

4

bits

(unnamed

field)

4

bits

clock

1

bit

(padding

—

23

bits)

To

the

next

int

boundary

(unnamed

field)

flag

1

bit

(padding

—

31

bits)

To

the

next

int

boundary

All

references

to

structure

fields

must

be

fully

qualified.

For

instance,

you

cannot

reference

the

second

field

by

toaster.

You

must

reference

this

field

by

kitchen.toaster.

The

following

expression

sets

the

light

field

to

1:

kitchen.light

=

1;

When

you

assign

to

a

bit

field

a

value

that

is

out

of

its

range,

the

bit

pattern

is

preserved

and

the

appropriate

bits

are

assigned.

The

following

expression

sets

the

toaster

field

of

the

kitchen

structure

to

0

because

only

the

least

significant

bit

is

assigned

to

the

toaster

field:

kitchen.toaster

=

2;

Related

References

v

″Aligning

data

in

aggregates″

in

XL

C

Programming

Guide

v

″-qalign″

in

XL

C

Compiler

Reference

Example

Program

Using

Structures:

The

following

program

finds

the

sum

of

the

integer

numbers

in

a

linked

list:

Type

Specifiers

52

C

Language

Reference

/**

**

Example

program

illustrating

structures

using

linked

lists

**/

#include

<stdio.h>

struct

record

{

int

number;

struct

record

*next_num;

};

int

main(void)

{

struct

record

name1,

name2,

name3;

struct

record

*recd_pointer

=

&name1;

int

sum

=

0;

name1.number

=

144;

name2.number

=

203;

name3.number

=

488;

name1.next_num

=

&name2;

name2.next_num

=

&name3;

name3.next_num

=

NULL;

while

(recd_pointer

!=

NULL)

{

sum

+=

recd_pointer->number;

recd_pointer

=

recd_pointer->next_num;

}

printf("Sum

=

%d\n",

sum);

return(0);

}

The

structure

type

record

contains

two

members:

the

integer

number

and

next_num,

which

is

a

pointer

to

a

structure

variable

of

type

record.

The

record

type

variables

name1,

name2,

and

name3

are

assigned

the

following

values:

Member

Name

Value

name1.number

144

name1.next_num

The

address

of

name2

name2.number

203

name2.next_num

The

address

of

name3

name3.number

488

name3.next_num

NULL

(Indicating

the

end

of

the

linked

list.)

The

variable

recd_pointer

is

a

pointer

to

a

structure

of

type

record.

It

is

initialized

to

the

address

of

name1

(the

beginning

of

the

linked

list).

The

while

loop

causes

the

linked

list

to

be

scanned

until

recd_pointer

equals

NULL.

The

statement:

recd_pointer

=

recd_pointer->next_num;

advances

the

pointer

to

the

next

object

in

the

list.

Related

References

v

“Incomplete

Types”

on

page

66

Type

Specifiers

Chapter

3.

Declarations

53

Unions

A

union

is

an

object

similar

to

a

structure

except

that

all

of

its

members

start

at

the

same

location

in

memory.

A

union

can

contain

the

value

of

only

one

of

its

members

at

a

time.

The

default

initializer

for

a

union

with

static

storage

is

the

default

for

the

first

component;

a

union

with

automatic

storage

has

none.

The

storage

allocated

for

a

union

is

the

storage

required

for

the

largest

member

of

the

union

(plus

any

padding

that

is

required

so

that

the

union

will

end

at

a

natural

boundary

of

its

member

having

the

most

stringent

requirements).

For

this

reason,

variably

modified

types

may

not

be

declared

as

union

members.

All

of

a

union’s

components

are

effectively

overlaid

in

memory:

each

member

of

a

union

is

allocated

storage

starting

at

the

beginning

of

the

union,

and

only

one

member

can

occupy

the

storage

at

a

time.

Any

member

of

a

union

can

be

initialized,

not

just

the

first

member,

by

using

a

designator.

A

designated

initializer

for

a

union

has

the

same

syntax

as

that

for

a

structure.

In

the

following

example,

the

designator

is

.any_member

and

the

initializer

is

{.any_member

=

13

}:

union

{

/*

...

*/

}

caw

=

{

.any_member

=

13

};

Compatible

Unions

Each

union

definition

creates

a

new

union

type

that

is

neither

the

same

as

nor

compatible

with

any

other

union

type

in

the

same

source

file.

However,

a

type

specifier

that

is

a

reference

to

a

previously

defined

union

type

is

the

same

type.

The

union

tag

associates

the

reference

with

the

definition,

and

effectively

acts

as

the

type

name.

Declaring

a

Union:

A

union

type

definition

contains

the

union

keyword

followed

by

an

optional

identifier

(tag)

and

a

brace-enclosed

list

of

members.

A

union

definition

has

the

following

form:

��

union

�

identifier

{

member

;

}

identifier

��

A

union

declaration

has

the

same

form

as

a

union

definition

except

that

the

declaration

has

no

brace-enclosed

list

of

members.

The

identifier

is

a

tag

given

to

the

union

specified

by

the

member

list.

Once

a

tag

is

specified,

any

subsequent

declaration

of

the

union

(in

the

same

scope)

can

be

made

by

declaring

the

tag

and

omitting

the

member

list.

If

a

tag

is

not

specified,

all

variable

definitions

that

refer

to

that

union

must

be

placed

within

the

statement

that

defines

the

data

type.

The

list

of

members

provides

the

data

type

with

a

description

of

the

objects

that

can

be

stored

in

the

union.

A

union

member

definition

has

same

form

as

a

variable

declaration.

A

member

of

a

union

can

be

referenced

the

same

way

as

a

member

of

a

structure.

Type

Specifiers

54

C

Language

Reference

For

example:

union

{

char

birthday[9];

int

age;

float

weight;

}

people;

people.birthday[0]

=

’\n’;

assigns

’\n’

to

the

first

element

in

the

character

array

birthday,

a

member

of

the

union

people.

A

union

can

represent

only

one

of

its

members

at

a

time.

In

the

example,

the

union

people

contains

either

age,

birthday,

or

weight

but

never

more

than

one

of

these.

The

printf

statement

in

the

following

example

does

not

give

the

correct

result

because

people.age

replaces

the

value

assigned

to

people.birthday

in

the

first

line:

#include

<stdio.h>

#include

<string.h>

union

{

char

birthday[9];

int

age;

float

weight;

}

people;

int

main(void)

{

strcpy(people.birthday,

"03/06/56");

printf("%s\n",

people.birthday);

people.age

=

38;

printf("%s\n",

people.birthday);

}

The

output

of

the

above

example

will

be

similar

to

the

following:

03/06/56

&

Defining

a

Union

Variable:

A

union

variable

definition

has

the

following

form:

��

storage_class_specifier

union

union_data_type_name

identifier

�

�

=

initialization_value

��

You

must

declare

the

union

data

type

before

you

can

define

a

union

having

that

type.

Any

named

member

of

a

union

can

be

initialized,

even

if

it

is

not

the

first

member.

The

initializer

for

an

automatic

variable

of

union

type

can

be

a

constant

or

non-constant

expression.

Allowing

a

nonconstant

aggregate

initializer

is

a

C99

language

feature.

The

following

example

shows

how

you

would

initialize

the

first

union

member

birthday

of

the

union

variable

people:

union

{

char

birthday[9];

int

age;

float

weight;

}

people

=

{"23/07/57"};

Type

Specifiers

Chapter

3.

Declarations

55

You

can

define

a

union

data

type

and

a

union

of

that

type

in

the

same

statement

by

placing

the

variable

declarator

after

the

data

type

definition.

The

storage

class

specifier

for

the

variable

must

appear

at

the

beginning

of

the

statement.

Anonymous

Unions:

An

anonymous

union

is

a

union

without

a

class

name.

It

cannot

be

followed

by

a

declarator.

An

anonymous

union

is

not

a

type;

it

defines

an

unnamed

object

and

it

cannot

have

member

functions.

The

member

names

of

an

anonymous

union

must

be

distinct

from

other

names

within

the

scope

in

which

the

union

is

declared.

You

can

use

member

names

directly

in

the

union

scope

without

any

additional

member

access

syntax.

For

example,

in

the

following

code

fragment,

you

can

access

the

data

members

i

and

cptr

directly

because

they

are

in

the

scope

containing

the

anonymous

union.

Because

i

and

cptr

are

union

members

and

have

the

same

address,

you

should

only

use

one

of

them

at

a

time.

The

assignment

to

the

member

cptr

will

change

the

value

of

the

member

i.

void

f()

{

union

{

int

i;

char*

cptr

;

};

/*

.

.

.

*/

i

=

5;

cptr

=

"string_in_union";

//

overrides

the

value

5

}

Examples

of

Unions:

The

following

example

defines

a

union

data

type

(not

named)

and

a

union

variable

(named

length).

The

member

of

length

can

be

a

long

int,

a

float,

or

a

double.

union

{

float

meters;

double

centimeters;

long

inches;

}

length;

The

following

example

defines

the

union

type

data

as

containing

one

member.

The

member

can

be

named

charctr,

whole,

or

real.

The

second

statement

defines

two

data

type

variables:

input

and

output.

union

data

{

char

charctr;

int

whole;

float

real;

};

union

data

input,

output;

The

following

statement

assigns

a

character

to

input:

input.charctr

=

’h’;

The

following

statement

assigns

a

floating-point

number

to

member

output:

output.real

=

9.2;

The

following

example

defines

an

array

of

structures

named

records.

Each

element

of

records

contains

three

members:

the

integer

id_num,

the

integer

type_of_input,

and

the

union

variable

input.

input

has

the

union

data

type

defined

in

the

previous

example.

Type

Specifiers

56

C

Language

Reference

struct

{

int

id_num;

int

type_of_input;

union

data

input;

}

records[10];

The

following

statement

assigns

a

character

to

the

structure

member

input

of

the

first

element

of

records:

records[0].input.charctr

=

’g’;

Enumerations

An

enumeration

is

a

data

type

consisting

of

a

set

of

values

that

are

named

integral

constants.

It

is

also

referred

to

as

an

enumerated

type

because

you

must

list

(enumerate)

each

of

the

values

in

creating

a

name

for

each

of

them.

A

named

value

in

an

enumeration

is

called

an

enumeration

constant.

In

addition

to

providing

a

way

of

defining

and

grouping

sets

of

integral

constants,

enumerations

are

useful

for

variables

that

have

a

small

number

of

possible

values.

You

can

define

an

enumeration

data

type

and

all

variables

that

have

that

enumeration

type

in

one

statement,

or

you

can

declare

an

enumeration

type

separately

from

the

definition

of

variables

of

that

type.

The

identifier

associated

with

the

data

type

(not

an

object)

is

called

an

enumeration

tag.

Each

distinct

enumeration

is

a

different

enumeration

type.

Compatible

Enumerations

In

C,

each

enumerated

type

must

be

compatible

with

the

integer

type

that

represents

it.

Enumeration

variables

and

constants

are

treated

by

the

compiler

as

integer

types.

Consequently,

in

C

you

can

freely

mix

the

values

of

different

enumerated

types,

regardless

of

type

compatibility.

Compatibility

between

an

enumerated

type

and

the

integer

type

that

represents

it

is

controlled

by

compiler

options

and

related

pragmas.

For

a

full

discussion

of

the

enum

compiler

option

and

related

#pragmas,

see

XL

C

Compiler

Reference

Declaring

an

Enumeration

Data

Type:

An

enumeration

type

declaration

contains

the

enum

keyword

followed

by

an

optional

identifier

(the

enumeration

tag)

and

a

brace-enclosed

list

of

enumerators.

Commas

separate

each

enumerator

in

the

enumerator

list.

C99

allows

a

trailing

comma

between

the

last

enumerator

and

the

closing

brace.

A

declaration

of

an

enumeration

has

the

form:

��

enum

identifier

�

,

{

enumerator

}

;

��

The

keyword

enum,

followed

by

the

identifier,

names

the

data

type

(like

the

tag

on

a

struct

data

type).

The

list

of

enumerators

provides

the

data

type

with

a

set

of

values.

In

C,

each

enumerator

represents

an

integer

value.

An

enumerator

has

the

form:

Type

Specifiers

Chapter

3.

Declarations

57

��

identifier

=

integral_constant_expression

��

To

conserve

space,

enumerations

may

be

stored

in

spaces

smaller

than

that

of

an

int.

Enumeration

Constants:

When

you

define

an

enumeration

data

type,

you

specify

a

set

of

identifiers

that

the

data

type

represents.

Each

identifier

in

this

set

is

an

enumeration

constant.

The

value

of

the

constant

is

determined

in

the

following

way:

1.

An

equal

sign

(=)

and

a

constant

expression

after

the

enumeration

constant

gives

an

explicit

value

to

the

constant.

The

identifier

represents

the

value

of

the

constant

expression.

2.

If

no

explicit

value

is

assigned,

the

leftmost

constant

in

the

list

receives

the

value

zero

(0).

3.

Identifiers

with

no

explicitly

assigned

values

receive

the

integer

value

that

is

one

greater

than

the

value

represented

by

the

previous

identifier.

In

C,

enumeration

constants

have

type

int.

Like

integer

constants,

the

type

of

an

enumeration

constant

can

be

modified

by

the

suffixes

for

unsignedness

(u

or

U),

long

integer

(l

or

L),

and

long

long

integer

(ll

or

LL).

If

a

constant

expression

is

used

as

an

initializer,

the

value

of

the

expression

cannot

exceed

the

range

of

int

(that

is,

INT_MIN

to

INT_MAX

as

defined

in

the

header

<limits.h>).

Each

enumeration

constant

must

be

unique

within

the

scope

in

which

the

enumeration

is

defined.

In

the

following

example,

second

declarations

of

average

and

poor

cause

compiler

errors:

func()

{

enum

score

{

poor,

average,

good

};

enum

rating

{

below,

average,

above

};

int

poor;

}

The

following

data

type

declarations

list

oats,

wheat,

barley,

corn,

and

rice

as

enumeration

constants.

The

number

under

each

constant

shows

the

integer

value.

enum

grain

{

oats,

wheat,

barley,

corn,

rice

};

/*

0

1

2

3

4

*/

enum

grain

{

oats=1,

wheat,

barley,

corn,

rice

};

/*

1

2

3

4

5

*/

enum

grain

{

oats,

wheat=10,

barley,

corn=20,

rice

};

/*

0

10

11

20

21

*/

It

is

possible

to

associate

the

same

integer

with

two

different

enumeration

constants.

For

example,

the

following

definition

is

valid.

The

identifiers

suspend

and

hold

have

the

same

integer

value.

enum

status

{

run,

clear=5,

suspend,

resume,

hold=6

};

/*

0

5

6

7

6

*/

Defining

Enumeration

Variables:

An

enumeration

variable

definition

has

the

following

form:

Type

Specifiers

58

C

Language

Reference

��

storage_class_specifier

enum

enumeration_data_type_name

identifier

�

�

=

enumeration_constant

��

You

must

declare

the

enumeration

data

type

before

you

can

define

a

variable

having

that

type.

The

first

line

of

the

following

example

declares

the

enumeration

grain.

The

second

line

defines

the

variable

g_food

and

gives

g_food

the

initial

value

of

barley

(2).

enum

grain

{

oats,

wheat,

barley,

corn,

rice

};

enum

grain

g_food

=

barley;

The

type

specifier

enum

grain

indicates

that

the

value

of

g_food

is

a

member

of

the

enumerated

data

type

grain.

Defining

an

Enumeration

Type

and

Enumeration

Objects:

You

can

define

a

type

and

a

variable

in

one

statement

by

using

a

declarator

and

an

optional

initializer

after

the

type

definition.

To

specify

a

storage

class

specifier

for

the

variable,

you

must

put

the

storage

class

specifier

at

the

beginning

of

the

declaration.

For

example:

register

enum

score

{

poor=1,

average,

good

}

rating

=

good;

This

example

is

equivalent

to

the

following

two

declarations:

enum

score

{

poor=1,

average,

good

};

register

enum

score

rating

=

good;

Both

examples

define

the

enumeration

data

type

score

and

the

variable

rating.

rating

has

the

storage

class

specifier

register,

the

data

type

enum

score,

and

the

initial

value

good.

Combining

a

data

type

definition

with

the

definitions

of

all

variables

having

that

data

type

lets

you

leave

the

data

type

unnamed.

For

example:

enum

{

Sunday,

Monday,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday

}

weekday;

defines

the

variable

weekday,

which

can

be

assigned

any

of

the

specified

enumeration

constants.

Example

Program

Using

Enumerations:

The

following

program

receives

an

integer

as

input.

The

output

is

a

sentence

that

gives

the

French

name

for

the

weekday

that

is

associated

with

the

integer.

If

the

integer

is

not

associated

with

a

weekday,

the

program

prints

"C’est

le

mauvais

jour."

/**

**

Example

program

using

enumerations

**/

#include

<stdio.h>

enum

days

{

Monday=1,

Tuesday,

Wednesday,

Thursday,

Friday,

Saturday,

Sunday

}

weekday;

void

french(enum

days);

int

main(void)

{

Type

Specifiers

Chapter

3.

Declarations

59

int

num;

printf("Enter

an

integer

for

the

day

of

the

week.

"

"Mon=1,...,Sun=7\n");

scanf("%d",

&num);

weekday=num;

french(weekday);

return(0);

}

void

french(enum

days

weekday)

{

switch

(weekday)

{

case

Monday:

printf("Le

jour

de

la

semaine

est

lundi.\n");

break;

case

Tuesday:

printf("Le

jour

de

la

semaine

est

mardi.\n");

break;

case

Wednesday:

printf("Le

jour

de

la

semaine

est

mercredi.\n");

break;

case

Thursday:

printf("Le

jour

de

la

semaine

est

jeudi.\n");

break;

case

Friday:

printf("Le

jour

de

la

semaine

est

vendredi.\n");

break;

case

Saturday:

printf("Le

jour

de

la

semaine

est

samedi.\n");

break;

case

Sunday:

printf("Le

jour

de

la

semaine

est

dimanche.\n");

break;

default:

printf("C’est

le

mauvais

jour.\n");

}

}

Complex

Types

Complex

types

consist

of

two

parts:

a

real

part

and

an

imaginary

part.

Imaginary

types

consist

of

only

the

imaginary

part.

There

are

three

type

specifiers

for

complex

types:

v

float

v

double

v

long

double

To

declare

a

data

object

that

is

a

complex

type,

use

the

one

of

the

following

type

specifiers:

��

float

double

long

double

complex

��

The

imaginary

unit

I

is

a

constant

of

type

float

complex.

The

predefined

macro

_Complex_I

represents

a

constant

expression

of

type

const

float

_Complex,

with

the

value

of

the

imaginary

unit.

Type

Specifiers

60

C

Language

Reference

The

complex

type

and

the

real

floating

type

are

collectively

called

the

floating

types.

Each

floating

type

has

a

corresponding

real

type.

For

a

real

floating

type,

it

is

the

same

type.

For

a

complex

type,

it

is

the

type

given

by

deleting

the

keyword

_Complex

from

the

type

name.

The

representation

and

alignment

requirements

of

a

complex

type

are

the

same

as

an

array

type

containing

two

elements

of

the

corresponding

real

type.

The

real

part

is

equal

to

the

first

element;

the

imaginary

part

is

equal

to

the

second

element.

Arithmetic

conversions

are

the

same

as

those

for

the

real

type

of

the

complex

type.

If

either

operand

is

a

complex

type,

the

result

is

a

complex

type,

and

the

operand

having

the

smaller

type

for

its

real

part

is

promoted

to

the

complex

type

corresponding

to

the

larger

of

the

real

types.

For

example,

a

double

_Complex

added

to

a

float

_Complex

will

yield

a

result

of

type

double

_Complex.

When

casting

a

complex

type

to

a

real

type,

the

imaginary

part

is

dropped.

When

the

value

of

a

real

type

is

converted

to

a

complex

type,

the

real

part

of

the

complex

result

value

is

determined

by

the

rules

of

conversion

to

the

corresponding

real

type,

and

the

imaginary

part

of

the

complex

result

value

is

a

positive

zero

or

an

unsigned

zero.

The

equality

and

inequality

operators

have

the

same

behavior

as

for

real

types.

None

of

the

relational

operators

may

have

a

complex

type

as

an

operand.

The

C99

complex

types

are

defined

in

the

header

file

/usr/include/complex.h.

Related

References

v

“Complex

Literals”

on

page

20

Type

Qualifiers

C

recognizes

three

type

qualifiers,

const,

volatile,

and

restrict.

The

type

qualifier

restrict

may

only

be

applied

to

pointers.

Syntax

for

the

const

and

volatile

keywords

For

a

volatile

or

const

pointer,

you

must

put

the

keyword

between

the

*

and

the

identifier.

For

example:

int

*

volatile

x;

/*

x

is

a

volatile

pointer

to

an

int

*/

int

*

const

y

=

&z;

/*

y

is

a

const

pointer

to

the

int

variable

z

*/

For

a

pointer

to

a

volatile

or

const

data

object,

the

type

specifier,

qualifier,

and

storage

class

specifier

can

be

in

any

order.

For

example:

volatile

int

*x;

/*

x

is

a

pointer

to

a

volatile

int

or

*/

int

volatile

*x;

/*

x

is

a

pointer

to

a

volatile

int

*/

const

int

*y;

/*

y

is

a

pointer

to

a

const

int

or

*/

int

const

*y;

/*

y

is

a

pointer

to

a

const

int

*/

In

the

following

example,

the

pointer

to

y

is

a

constant.

You

can

change

the

value

that

y

points

to,

but

you

cannot

change

the

value

of

y:

int

*

const

y

In

the

following

example,

the

value

that

y

points

to

is

a

constant

integer

and

cannot

be

changed.

However,

you

can

change

the

value

of

y:

Type

Specifiers

Chapter

3.

Declarations

61

const

int

*

y

For

other

types

of

volatile

and

const

variables,

the

position

of

the

keyword

within

the

definition

(or

declaration)

is

less

important.

For

example:

volatile

struct

omega

{

int

limit;

char

code;

}

group;

provides

the

same

storage

as:

struct

omega

{

int

limit;

char

code;

}

volatile

group;

In

both

examples,

only

the

structure

variable

group

receives

the

volatile

qualifier.

Similarly,

if

you

specified

the

const

keyword

instead

of

volatile,

only

the

structure

variable

group

receives

the

const

qualifier.

The

const

and

volatile

qualifiers

when

applied

to

a

structure,

union,

or

class

also

apply

to

the

members

of

the

structure,

union,

or

class.

Although

enumeration,

class,

structure,

and

union

variables

can

receive

the

volatile

or

const

qualifier,

enumeration,

class,

structure,

and

union

tags

do

not

carry

the

volatile

or

const

qualifier.

For

example,

the

blue

structure

does

not

carry

the

volatile

qualifier:

volatile

struct

whale

{

int

weight;

char

name[8];

}

beluga;

struct

whale

blue;

The

keywords

volatile

and

const

cannot

separate

the

keywords

enum,

class,

struct,

and

union

from

their

tags.

You

can

declare

or

define

a

volatile

or

const

function

only

if

it

is

a

nonstatic

member

function.

You

can

define

or

declare

any

function

to

return

a

pointer

to

a

volatile

or

const

function.

An

item

can

be

both

const

and

volatile.

In

this

case

the

item

cannot

be

legitimately

modified

by

its

own

program

but

can

be

modified

by

some

asynchronous

process.

You

can

put

more

than

one

qualifier

on

a

declaration:

the

compiler

ignores

duplicate

type

qualifiers.

The

const

Type

Qualifier

The

const

qualifier

explicitly

declares

a

data

object

as

something

that

cannot

be

changed.

Its

value

is

set

at

initialization.

You

cannot

use

const

data

objects

in

expressions

requiring

a

modifiable

lvalue.

For

example,

a

const

data

object

cannot

appear

on

the

lefthand

side

of

an

assignment

statement.

An

object

that

is

declared

const

is

guaranteed

to

remain

constant

for

its

lifetime,

not

throughout

the

entire

execution

of

the

program.

For

this

reason,

a

const

object

cannot

be

used

in

constant

expressions.

In

the

following

example,

the

const

object

k

is

declared

within

foo,

is

initialized

to

the

value

of

foo’s

argument,

and

remains

constant

until

the

function

returns.

In

C,

k

cannot

be

used

to

specify

the

length

of

an

array

because

that

value

will

not

be

known

until

foo

is

called.

Type

Specifiers

62

C

Language

Reference

void

foo(int

j)

{

const

int

k

=

j;

int

ary[k];

/*

Violates

rule

that

the

length

of

each

array

must

be

known

to

the

compiler

*/

}

In

C,

a

const

object

that

is

declared

outside

a

block

has

external

linkage

and

can

be

shared

among

files.

In

the

following

example,

you

cannot

use

k

to

specify

the

length

of

the

array

because

it

is

probably

defined

in

another

file.

extern

const

int

k;

int

ary[k];

/*

Another

violation

of

the

rule

that

the

length

of

each

array

must

be

known

to

the

compiler

*/

A

top-level

declaration

of

a

const

object

without

an

explicit

storage

class

is

considered

to

be

extern.

The

volatile

Type

Qualifier

The

volatile

qualifier

maintains

consistency

of

memory

access

to

data

objects.

Volatile

objects

are

read

from

memory

each

time

their

value

is

needed,

and

written

back

to

memory

each

time

they

are

changed.

The

volatile

qualifier

declares

a

data

object

that

can

have

its

value

changed

in

ways

outside

the

control

or

detection

of

the

compiler

(such

as

a

variable

updated

by

the

system

clock).

The

compiler

is

thereby

notified

not

to

apply

certain

optimizations

to

code

referring

to

the

object.

Accessing

any

lvalue

expression

that

is

volatile-qualified

produces

a

side

effect.

A

side

effect

means

that

the

state

of

the

execution

environment

changes.

References

to

an

object

of

type

″pointer

to

volatile″

may

be

optimized,

but

no

optimization

can

occur

to

references

to

the

object

to

which

it

points.

An

explicit

cast

must

be

used

to

assign

a

value

of

type

″pointer

to

volatile

T″

to

an

object

of

type

″pointer

to

T″.

The

following

shows

valid

uses

of

volatile

objects.

volatile

int

*

pvol;

int

*ptr;

pvol

=

ptr;

/*

Legal

*/

ptr

=

(int

*)pvol;

/*

Explicit

cast

required

*/

A

signal-handling

function

may

store

a

value

in

a

variable

of

type

sig_atomic_t,

provided

that

the

variable

is

declared

volatile.

This

is

an

exception

to

the

rule

that

a

signal-handling

function

may

not

access

variables

with

static

storage

duration.

The

restrict

Type

Qualifier

The

restrict

type

qualifier

may

only

be

applied

to

a

pointer.

A

pointer

declaration

that

uses

this

type

qualifier

establishes

a

special

association

between

the

pointer

and

the

object

it

accesses,

making

that

pointer

and

expressions

based

on

that

pointer,

the

only

ways

to

directly

or

indirectly

access

the

value

of

that

object.

A

pointer

is

the

address

of

a

location

in

memory.

More

than

one

pointer

can

access

the

same

chunk

of

memory

and

modify

it

during

the

course

of

a

program.

The

restrict

type

qualifier

is

an

indication

to

the

compiler

that,

if

the

memory

addressed

by

the

restrict-qualified

pointer

is

modified,

no

other

pointer

will

access

that

same

memory.

The

compiler

may

choose

to

optimize

code

involving

restrict-qualified

pointers

in

a

way

that

might

otherwise

result

in

incorrect

behavior.

It

is

the

responsibility

of

the

programmer

to

ensure

that

restrict-qualified

pointers

are

used

as

they

were

intended

to

be

used.

Otherwise,

undefined

behavior

may

result.

Type

Specifiers

Chapter

3.

Declarations

63

If

a

particular

chunk

of

memory

is

not

modified,

it

can

be

aliased

through

more

than

one

restricted

pointer.

The

following

example

shows

restricted

pointers

as

parameters

of

foo(),

and

how

an

unmodified

object

can

be

aliased

through

two

restricted

pointers.

void

foo(int

n,

int

*

restrict

a,

int

*

restrict

b,

int

*

restrict

c)

{

int

i;

for

(i

=

0;

i

<

n;

i++)

a[i]

=

b[i]

+

c[i];

}

Assignments

between

restricted

pointers

are

limited,

and

no

distinction

is

made

between

a

function

call

and

an

equivalent

nested

block.

{

int

*

restrict

x;

int

*

restrict

y;

x

=

y;

//

undefined

{

int

*

restrict

x1

=

x;

//

okay

int

*

restrict

y1

=

y;

//

okay

x

=

y1;

//

undefined

}

}

In

nested

blocks

containing

restricted

pointers,

only

assignments

of

restricted

pointers

from

outer

to

inner

blocks

are

allowed.

The

exception

is

when

the

block

in

which

the

restricted

pointer

is

declared

finishes

execution.

At

that

point

in

the

program,

the

value

of

the

restricted

pointer

can

be

carried

out

of

the

block

in

which

it

was

declared.

Related

References

v

“Type

Qualifiers”

on

page

61

The

asm

Declaration

The

keyword

asm

stands

for

assembly

code.

When

compiled

under

strict

language

levels,

the

compiler

recognizes

and

ignores

the

keyword

asm

in

a

declaration.

Under

extended

language

levels,

the

compiler

provides

partial

support

for

embedded

assembly

code

fragments

among

C

and

C++

source

statements.

This

extension

has

been

implemented

for

use

in

general

system

programming

code,

in

the

kernel

and

device

drivers,

which

were

originally

developed

with

GNU

C.

The

syntax

is

as

follows:

��

asm

__asm

__asm__

volatile

�

:

(

code_format_string

)

output

input

clobbers

��

Type

Specifiers

64

C

Language

Reference

input:

�

,

constraint

(

C_expression

)

output:

�

,

constraint

(

C_expression

)

where

volatile

Instructs

the

compiler

that

the

assembler

instructions

may

update

memory

not

listed

in

output,

input,

or

clobbers.

code_format_string

Is

the

source

text

of

the

asm

instructions

and

is

a

string

literal

similar

to

a

printf

format

specifier.

input

Is

a

comma-separated

list

of

input

operands.

output

Is

a

comma-separated

list

of

output

operands.

clobbers

Is

a

comma-separated

list

of

register

names

enclosed

in

double

quotes.

These

are

registers

that

can

be

updated

by

the

asm

instruction.

constraint

Is

a

string

literal

specifying

the

constraints

for

the

operand,

one

character

per

constraint.

C_expression

Is

a

C

or

C++

expression

whose

value

is

used

as

the

operand

for

the

asm

instruction.

Output

operands

must

be

modifiable

lvalues.

The

following

constraints

are

supported.

=

Write-only

operand.

+

Read

and

write

operand.

&

An

operand

may

be

modified

before

the

instruction

is

finished

using

the

input

operands;

a

register

that

is

used

as

input

should

not

be

reused

here.

b

Use

a

general

register

other

than

zero.

f

Use

a

floating-point

register.

g

Use

a

general

register,

memory,

or

immediate

operand.

i

An

immediate

integer

operand.

m

A

memory

operand

supported

by

the

machine.

n

Handle

in

the

same

way

as

i.

o

Handle

in

the

same

way

as

m.

r

Use

a

general

register.

v

Use

a

vector

register.

0,

1,

2,

...8

A

matching

constraint.

Allocate

the

same

register

in

output

as

in

the

corresponding

input.

I,

J,

K,

M,

N,

O,

P,

G,

S,

T

Constant

values.

Fold

the

expression

in

the

operand

and

substitute

the

value

into

the

%

specifier.

Restrictions

The

number

of

instructions

in

an

asm

statement

is

limited

to

a

maximum

of

63.

Type

Specifiers

Chapter

3.

Declarations

65

The

assembler

instructions

must

be

self-contained

within

an

asm

statement.

The

asm

statement

can

only

be

used

to

generate

instructions.

All

connections

to

the

rest

of

the

program

must

be

established

through

the

output

and

input

operand

list.

Incomplete

Types

The

following

are

incomplete

types:

v

Type

void

v

Array

of

unknown

size

v

Arrays

of

elements

that

are

of

incomplete

type

v

Structure,

union,

or

enumerations

that

have

no

definition

void

is

an

incomplete

type

that

cannot

be

completed.

Incomplete

structure

or

union

and

enumeration

tags

must

be

completed

before

being

used

to

declare

an

object,

although

you

can

define

a

pointer

to

an

incomplete

structure

or

union.

An

array

with

an

unspecified

size

is

an

incomplete

type.

However,

if,

instead

of

a

constant

expression,

the

array

size

is

specified

by

[*],

indicating

a

variable

length

array,

the

size

is

considered

as

having

been

specified,

and

the

array

type

is

then

considered

a

complete

type.

If

the

function

declarator

is

not

part

of

a

definition

of

that

function,

parameters

may

have

incomplete

type.

The

parameters

may

also

have

variable

length

array

type,

indicated

by

the

[*]

notation.

The

following

examples

illustrate

incomplete

types:

void

*incomplete_ptr;

struct

dimension

linear;

/*

no

previous

definition

of

dimension

*/

void

is

an

incomplete

type

that

cannot

be

completed.

Incomplete

structure,

union,

or

enumeration

tags

must

be

completed

before

being

used

to

declare

an

object.

However,

you

can

define

a

pointer

to

an

incomplete

structure

or

union.

Type

Specifiers

66

C

Language

Reference

Chapter

4.

Declarators

A

declarator

designates

a

data

object

or

function.

Declarators

appear

in

most

data

definitions

and

declarations

and

in

some

type

definitions.

In

a

declarator,

you

can

specify

the

type

of

an

object

to

be

an

array,

a

pointer,

or

a

reference.

You

can

also

perform

initialization

in

a

declarator.

A

declarator

has

the

form:

declarator

��

�

pointer_operator

direct_declarator

��

direct_declarator

��

declarator_name

direct_declarator

(

parameter_declaration_list

)

cv_qualifiers

exception_specification

direct_declarator

[

]

constant_expression

(

declarator

)

��

pointer_operator

��

*

cv_qualifiers

&

nested_name_specifier

*

::

cv_qualifiers

��

declarator_id

��

identifier

��

Notes

on

the

declarator

syntax

v

The

cv_qualifiers

variable

represents

one

or

a

combination

of

const

and

volatile.

In

C,

you

cannot

declare

or

define

a

volatile

or

const

function.

The

following

table

provides

some

examples

of

declarators:

Example

Description

int

owner

owner

is

an

int

data

object.

int

*node

node

is

a

pointer

to

an

int

data

object.

int

names[126]

names

is

an

array

of

126

int

elements.

int

*action(

)

action

is

a

function

returning

a

pointer

to

an

int.

volatile

int

min

min

is

an

int

that

has

the

volatile

qualifier.

int

*

volatile

volume

volume

is

a

volatile

pointer

to

an

int.

©

Copyright

IBM

Corp.

1998,

2004

67

Example

Description

volatile

int

*

next

next

is

a

pointer

to

a

volatile

int.

volatile

int

*

sequence[5]

sequence

is

an

array

of

five

pointers

to

volatile

int

objects.

extern

const

volatile

int

clock

clock

is

a

constant

and

volatile

integer

with

static

storage

duration

and

external

linkage.

Initializers

An

initializer

is

an

optional

part

of

a

data

declaration

that

specifies

an

initial

value

of

a

data

object.

The

initializers

that

are

legal

for

a

particular

declaration

depend

on

the

type

and

storage

class

of

the

object

to

be

initialized.

The

initialization

properties

and

special

requirements

of

each

data

type

are

described

in

the

section

for

that

data

type.

The

initializer

consists

of

the

=

symbol

followed

by

an

initial

expression

or

a

brace-enclosed

list

of

initial

expressions

separated

by

commas.

Individual

expressions

must

be

separated

by

commas,

and

groups

of

expressions

can

be

enclosed

in

braces

and

separated

by

commas.

Braces

({

})

are

optional

if

the

initializer

for

a

character

string

is

a

string

literal.

The

number

of

initializers

must

not

be

greater

than

the

number

of

elements

to

be

initialized.

The

initial

expression

evaluates

to

the

first

value

of

the

data

object.

To

assign

a

value

to

an

arithmetic

or

pointer

type,

use

the

simple

initializer:

=

expression.

For

example,

the

following

data

definition

uses

the

initializer

=

3

to

set

the

initial

value

of

group

to

3:

int

group

=

3;

For

unions,

structures,

and

aggregate

classes

(classes

with

no

constructors,

base

classes,

virtual

functions,

or

private

or

protected

members),

the

set

of

initial

expressions

must

be

enclosed

in

braces

unless

the

initializer

is

a

string

literal.

In

an

array,

structure,

or

union

initialized

using

a

brace-enclosed

initializer

list,

any

members

or

subscripts

that

are

not

initialized

are

implicitly

initialized

to

zero

of

the

appropriate

type.

Example

In

the

following

example,

only

the

first

eight

elements

of

the

array

grid

are

explicitly

initialized.

The

remaining

four

elements

that

are

not

explicitly

initialized

are

initialized

as

if

they

were

explicitly

initialized

to

zero.

static

short

grid[3]

[4]

=

{0,

0,

0,

1,

0,

0,

1,

1};

The

initial

values

of

grid

are:

Element

Value

Element

Value

grid[0]

[0]

0

grid[1]

[2]

1

grid[0]

[1]

0

grid[1]

[3]

1

grid[0]

[2]

0

grid[2]

[0]

0

grid[0]

[3]

1

grid[2]

[1]

0

grid[1]

[0]

0

grid[2]

[2]

0

grid[1]

[1]

0

grid[2]

[3]

0

Declarators

68

C

Language

Reference

Pointers

A

pointer

type

variable

holds

the

address

of

a

data

object

or

a

function.

A

pointer

can

refer

to

an

object

of

any

one

data

type;

it

cannot

refer

to

a

bit

field

or

a

reference.

A

pointer

is

classified

as

a

scalar

type,

which

means

that

it

can

hold

only

one

value

at

a

time.

Some

common

uses

for

pointers

are:

v

To

access

dynamic

data

structures

such

as

linked

lists,

trees,

and

queues.

v

To

access

elements

of

an

array

or

members

of

a

structure

or

C++

class.

v

To

access

an

array

of

characters

as

a

string.

v

To

pass

the

address

of

a

variable

to

a

function.

(In

C++,

you

can

also

use

a

reference

to

do

this.)

By

referencing

a

variable

through

its

address,

a

function

can

change

the

contents

of

that

variable.

You

cannot

use

pointers

to

reference

objects

that

are

declared

with

the

register

storage

class

specifier.

Two

pointer

types

with

the

same

type

qualifiers

are

compatible

if

they

point

to

objects

of

compatible

types.

The

composite

type

for

two

compatible

pointer

types

is

the

similarly

qualified

pointer

to

the

composite

type.

Declaring

Pointers

The

following

example

declares

pcoat

as

a

pointer

to

an

object

having

type

long:

long

*pcoat;

If

the

keyword

volatile

appears

before

the

*,

the

declarator

describes

a

pointer

to

a

volatile

object.

If

the

keyword

volatile

appears

between

the

*

and

the

identifier,

the

declarator

describes

a

volatile

pointer.

The

keyword

const

operates

in

the

same

manner

as

the

volatile

keyword.

In

the

following

example,

pvolt

is

a

constant

pointer

to

an

object

having

type

short:

extern

short

*

const

pvolt;

The

following

example

declares

pnut

as

a

pointer

to

an

int

object

having

the

volatile

qualifier:

extern

int

volatile

*pnut;

The

following

example

defines

psoup

as

a

volatile

pointer

to

an

object

having

type

float:

float

*

volatile

psoup;

The

following

example

defines

pfowl

as

a

pointer

to

an

enumeration

object

of

type

bird:

enum

bird

*pfowl;

The

next

example

declares

pvish

as

a

pointer

to

a

function

that

takes

no

parameters

and

returns

a

char

object:

char

(*pvish)(void);

Assigning

Pointers

When

you

use

pointers

in

an

assignment

operation,

you

must

ensure

that

the

types

of

the

pointers

in

the

operation

are

compatible.

Initializers

Chapter

4.

Declarators

69

The

following

example

shows

compatible

declarations

for

the

assignment

operation:

float

subtotal;

float

*

sub_ptr;

/*

...

*/

sub_ptr

=

&subtotal;

printf("The

subtotal

is

%f\n",

*sub_ptr);

The

next

example

shows

incompatible

declarations

for

the

assignment

operation:

double

league;

int

*

minor;

/*

...

*/

minor

=

&league;

/*

error

*/

Initializing

Pointers

The

initializer

is

an

=

(equal

sign)

followed

by

the

expression

that

represents

the

address

that

the

pointer

is

to

contain.

The

following

example

defines

the

variables

time

and

speed

as

having

type

double

and

amount

as

having

type

pointer

to

a

double.

The

pointer

amount

is

initialized

to

point

to

total:

double

total,

speed,

*amount

=

&total;

The

compiler

converts

an

unsubscripted

array

name

to

a

pointer

to

the

first

element

in

the

array.

You

can

assign

the

address

of

the

first

element

of

an

array

to

a

pointer

by

specifying

the

name

of

the

array.

The

following

two

sets

of

definitions

are

equivalent.

Both

define

the

pointer

student

and

initialize

student

to

the

address

of

the

first

element

in

section:

int

section[80];

int

*student

=

section;

is

equivalent

to:

int

section[80];

int

*student

=

§ion[0];

You

can

assign

the

address

of

the

first

character

in

a

string

constant

to

a

pointer

by

specifying

the

string

constant

in

the

initializer.

The

following

example

defines

the

pointer

variable

string

and

the

string

constant

"abcd".

The

pointer

string

is

initialized

to

point

to

the

character

a

in

the

string

"abcd".

char

*string

=

"abcd";

The

following

example

defines

weekdays

as

an

array

of

pointers

to

string

constants.

Each

element

points

to

a

different

string.

The

pointer

weekdays[2],

for

example,

points

to

the

string

"Tuesday".

static

char

*weekdays[

]

=

{

"Sunday",

"Monday",

"Tuesday",

"Wednesday",

"Thursday",

"Friday",

"Saturday"

};

A

pointer

can

also

be

initialized

to

null

using

any

integer

constant

expression

that

evaluates

to

0,

for

example

char

*

a=0;.

Such

a

pointer

is

a

null

pointer.

It

does

not

point

to

any

object.

Initializers

70

C

Language

Reference

Using

Pointers

Two

operators

are

commonly

used

in

working

with

pointers,

the

address

(&)

operator

and

the

indirection

(*)

operator.

You

can

use

the

&

operator

to

refer

to

the

address

of

an

object.

For

example,

the

assignment

in

the

following

function

assigns

the

address

of

x

to

the

variable

p_to_int.

The

variable

p_to_int

has

been

defined

as

a

pointer:

void

f(int

x,

int

*p_to_int)

{

p_to_int

=

&x;

}

The

*

(indirection)

operator

lets

you

access

the

value

of

the

object

a

pointer

refers

to.

The

assignment

in

the

following

example

assigns

to

y

the

value

of

the

object

that

p_to_float

points

to:

void

g(float

y,

float

*p_to_float)

{

y

=

*p_to_float;

}

The

assignment

in

the

following

example

assigns

the

value

of

z

to

the

variable

that

*p_to_char

references:

void

h(char

z,

char

*p_to_char)

{

*p_to_char

=

z;

}

Pointer

Arithmetic

You

can

perform

a

limited

number

of

arithmetic

operations

on

pointers.

These

operations

are:

v

Increment

and

decrement

v

Addition

and

subtraction

v

Comparison

v

Assignment

The

increment

(++)

operator

increases

the

value

of

a

pointer

by

the

size

of

the

data

object

the

pointer

refers

to.

For

example,

if

the

pointer

refers

to

the

second

element

in

an

array,

the

++

makes

the

pointer

refer

to

the

third

element

in

the

array.

The

decrement

(--)

operator

decreases

the

value

of

a

pointer

by

the

size

of

the

data

object

the

pointer

refers

to.

For

example,

if

the

pointer

refers

to

the

second

element

in

an

array,

the

--

makes

the

pointer

refer

to

the

first

element

in

the

array.

You

can

add

an

integer

to

a

pointer

but

you

cannot

add

a

pointer

to

a

pointer.

If

the

pointer

p

points

to

the

first

element

in

an

array,

the

following

expression

causes

the

pointer

to

point

to

the

third

element

in

the

same

array:

p

=

p

+

2;

If

you

have

two

pointers

that

point

to

the

same

array,

you

can

subtract

one

pointer

from

the

other.

This

operation

yields

the

number

of

elements

in

the

array

that

separate

the

two

addresses

that

the

pointers

refer

to.

You

can

compare

two

pointers

with

the

following

operators:

==,

!=,

<,

>,

<=,

and

>=.

Initializers

Chapter

4.

Declarators

71

Pointer

comparisons

are

defined

only

when

the

pointers

point

to

elements

of

the

same

array.

Pointer

comparisons

using

the

==

and

!=

operators

can

be

performed

even

when

the

pointers

point

to

elements

of

different

arrays.

You

can

assign

to

a

pointer

the

address

of

a

data

object,

the

value

of

another

compatible

pointer

or

the

NULL

pointer.

Example

Program

Using

Pointers

The

following

program

contains

pointer

arrays:

/**

**

Program

to

search

for

the

first

occurrence

of

a

specified

**

**

character

string

in

an

array

of

character

strings.

**

**/

#include

<stdio.h>

#include

<stdlib.h>

#include

<string.h>

#define

SIZE

20

int

main(void)

{

static

char

*names[

]

=

{

"Jim",

"Amy",

"Mark",

"Sue",

NULL

};

char

*

find_name(char

**,

char

*);

char

new_name[SIZE],

*name_pointer;

printf("Enter

name

to

be

searched.\n");

scanf("%s",

new_name);

name_pointer

=

find_name(names,

new_name);

printf("name

%s%sfound\n",

new_name,

(name_pointer

==

NULL)

?

"

not

"

:

"

");

}

/*

End

of

main

*/

/**

**

Function

find_name.

This

function

searches

an

array

of

**

**

names

to

see

if

a

given

name

already

exists

in

the

array.

**

**

It

returns

a

pointer

to

the

name

or

NULL

if

the

name

is

**

**

not

found.

**

**

**

**

char

**arry

is

a

pointer

to

arrays

of

pointers

(existing

names)

**

**

char

*strng

is

a

pointer

to

character

array

entered

(new

name)

**

**/

char

*

find_name(char

**arry,

char

*strng)

{

for

(;

*arry

!=

NULL;

arry++)

/*

for

each

name

*/

{

if

(strcmp(*arry,

strng)

==

0)

/*

if

strings

match

*/

return(*arry);

/*

found

it!

*/

}

return(*arry);

/*

return

the

pointer

*/

}

/*

End

of

find_name

*/

Interaction

with

this

program

could

produce

the

following

sessions:

Output

Enter

name

to

be

searched.

Input

Mark

Output

name

Mark

found

or:

Initializers

72

C

Language

Reference

Output

Enter

name

to

be

searched.

Input

Deborah

Output

name

Deborah

not

found

Arrays

An

array

is

a

collection

of

objects

of

the

same

data

type.

Individual

objects

in

an

array,

called

elements,

are

accessed

by

their

position

in

the

array.

The

subscripting

operator

([])

provides

the

mechanics

for

creating

an

index

to

array

elements.

This

form

of

access

is

called

indexing

or

subscripting.

An

array

facilitates

the

coding

of

repetitive

tasks

by

allowing

the

statements

executed

on

each

element

to

be

put

into

a

loop

that

iterates

through

each

element

in

the

array.

The

C

and

C++

languages

provide

limited

built-in

support

for

an

array

type:

reading

and

writing

individual

elements.

Assignment

of

one

array

to

another,

the

comparison

of

two

arrays

for

equality,

returning

self-knowledge

of

size

are

operations

unsupported

by

either

language.

An

array

type

describes

contiguously

allocated

memory

for

a

set

of

objects

of

a

particular

type.

The

array

type

is

derived

from

the

type

of

its

elements,

in

what

is

called

array

type

derivation.

If

array

objects

are

of

incomplete

type,

the

array

type

is

also

considered

incomplete.

Array

elements

may

not

be

of

type

void

or

of

function

type.

However,

arrays

of

pointers

to

functions

are

allowed.

In

C++,

array

elements

may

not

be

of

reference

type

or

of

an

abstract

class

type.

Two

array

types

that

are

similarly

qualified

are

compatible

if

the

types

of

their

elements

are

compatible.

For

example,

char

ex1[25];

const

char

ex2[25];

are

not

compatible.

The

composite

type

of

two

compatible

array

types

is

an

array

with

the

composite

element

type.

The

sizes

of

both

original

types

must

be

equivalent

if

they

are

known.

If

the

size

of

only

one

of

the

original

array

types

is

known,

then

the

composite

type

has

that

size.

For

example,

suppose:

char

ex3[];

char

ex4[42];

The

composite

type

of

ex3

and

ex4

is

char[42].

If

one

of

the

original

types

is

a

variable

length

array,

the

composite

type

is

that

type.

Except

in

certain

contexts,

an

unsubscripted

array

name

(for

example,

region

instead

of

region[4])

represents

a

pointer

whose

value

is

the

address

of

the

first

element

of

the

array,

provided

that

the

array

has

previously

been

declared.

The

exceptions

are

when

the

array

name

passes

the

array

itself.

For

example,

the

array

name

passes

the

entire

array

when

it

is

the

operand

of

the

sizeof

operator

or

the

address

(&)

operator.

Similarly,

an

array

type

in

the

parameter

list

of

a

function

is

converted

to

the

corresponding

pointer

type.

Information

about

the

size

of

the

argument

array

is

lost

when

the

array

is

accessed

from

within

the

function

body.

Initializers

Chapter

4.

Declarators

73

To

preserve

this

information,

which

is

useful

for

optimization,

you

may

declare

the

index

of

the

argument

array

using

the

static

keyword.

The

constant

expression

specifies

the

minimum

pointer

size

that

can

be

used

as

an

assumption

for

optimizations.

This

particular

usage

of

the

static

keyword

is

highly

prescribed.

The

keyword

may

only

appear

in

the

outermost

array

type

derivation

and

only

in

function

parameter

declarations.

If

the

caller

of

the

function

does

not

abide

by

these

restrictions,

the

behavior

is

undefined.

This

language

feature

is

available

at

the

C99

language

level.

The

following

examples

show

how

the

feature

might

be

used.

void

foo(int

arr

[static

10]);

/*

arr

points

to

the

first

of

at

least

10

ints

*/

void

foo(int

arr

[const

10]);

/*

arr

is

a

const

pointer

*/

void

foo(int

arr

[static

const

i]);

/*

arr

points

to

at

least

i

ints;

i

is

computed

at

run

time.

*/

void

foo(int

arr

[const

static

i]);

/*

alternate

syntax

to

previous

example

*/

void

foo(int

arr

[const]);

/*

const

pointer

to

int

*/

Declaring

Arrays

The

array

declarator

contains

an

identifier

followed

by

an

optional

subscript

declarator.

An

identifier

preceded

by

an

asterisk

(*)

is

an

array

of

pointers.

A

subscript

declarator

has

the

form:

��

[

]

type_qualifier_list

assignment_expression

static

assignment_expression

type_qualifier_list

type_qualifier_list

static

assignment_expression

*

type_qualifier_list

�

�

�

[

constant_expression

]

��

where

constant_expression

is

a

constant

integer

expression,

indicating

the

size

of

the

array,

which

must

be

positive.

If

the

declaration

appears

in

block

or

function

scope,

a

nonconstant

expression

can

be

specified

for

the

array

subscript

declarator,

and

the

array

is

considered

a

variably

modified

type.

An

asterisk

within

the

brackets

of

the

array

subscripting

operator

indicates

a

variable

length

array

of

unspecified

size.

In

this

case,

the

array

is

considered

a

variably

modified

type

that

can

only

be

used

in

functions

declarations

that

are

not

definitions

(that

is,

in

declarations

with

function

prototype

scope).

The

subscript

declarator

describes

the

number

of

dimensions

in

the

array

and

the

number

of

elements

in

each

dimension.

Each

bracketed

expression,

or

subscript,

describes

a

different

dimension

and

must

be

a

constant

expression.

The

following

example

defines

a

one-dimensional

array

that

contains

four

elements

having

type

char:

Initializers

74

C

Language

Reference

char

list[4];

The

first

subscript

of

each

dimension

is

0.

The

array

list

contains

the

elements:

list[0]

list[1]

list[2]

list[3]

The

following

example

defines

a

two-dimensional

array

that

contains

six

elements

of

type

int:

int

roster[3][2];

Multidimensional

arrays

are

stored

in

row-major

order.

When

elements

are

referred

to

in

order

of

increasing

storage

location,

the

last

subscript

varies

the

fastest.

For

example,

the

elements

of

array

roster

are

stored

in

the

order:

roster[0][0]

roster[0][1]

roster[1][0]

roster[1][1]

roster[2][0]

roster[2][1]

In

storage,

the

elements

of

roster

would

be

stored

as:

│

│

│

└───────────────┴───────────────┴───────────────

�

�

�

│

│

│

roster[0][0]

roster[0][1]

roster[1][0]

You

can

leave

the

first

(and

only

the

first)

set

of

subscript

brackets

empty

in

v

Array

definitions

that

contain

initializations

v

extern

declarations

v

Parameter

declarations

In

array

definitions

that

leave

the

first

set

of

subscript

brackets

empty,

the

initializer

determines

the

number

of

elements

in

the

first

dimension.

In

a

one-dimensional

array,

the

number

of

initialized

elements

becomes

the

total

number

of

elements.

In

a

multidimensional

array,

the

initializer

is

compared

to

the

subscript

declarator

to

determine

the

number

of

elements

in

the

first

dimension.

Variable

Length

Arrays

A

variable

length

array

is

an

array

of

automatic

storage

duration

whose

length

is

determined

at

run

time.

The

variable

length

array

type

provides

a

construct

for

allocating

the

right

amount

of

storage,

which

can

only

be

determined

when

the

application

is

actually

run.

A

variable

length

array

can

be

written

as:

��

array_identifier

[

expression

]

*

type-qualifier-list

��

Initializers

Chapter

4.

Declarators

75

If

the

size

of

the

array

is

indicated

by

*

instead

of

an

expression,

the

variable

length

array

is

considered

to

be

of

unspecified

size.

Such

arrays

are

considered

complete

types,

but

can

only

be

used

in

declarations

of

function

prototype

scope.

A

variable

length

array

and

a

pointer

to

a

variable

length

array

are

considered

variably

modified

types.

Declarations

of

variably

modified

types

must

be

at

either

block

scope

or

function

prototype

scope.

Array

objects

declared

with

the

extern

storage

class

specifier

cannot

be

of

variable

length

array

type.

Array

objects

declared

with

the

static

storage

class

specifier

can

be

a

pointer

to

a

variable

length

array,

but

not

an

actual

variable

length

array.

The

identifiers

declared

with

a

variably

modified

type

must

be

ordinary

identifiers

and

therefore

cannot

be

members

of

structures

or

unions.

A

variable

length

array

cannot

be

initialized.

A

variable

length

array

can

be

the

operand

of

a

sizeof

expression.

In

this

case,

the

operand

is

evaluated

at

run

time,

and

the

size

is

neither

an

integer

constant

nor

a

constant

expression,

even

though

the

size

of

each

instance

of

a

variable

array

does

not

change

during

its

lifetime.

A

variable

length

array

can

be

used

in

a

typedef

expression.

The

typedef

name

will

have

only

block

scope.

The

length

of

the

array

is

fixed

when

the

typedef

name

is

defined,

not

each

time

it

is

used.

A

function

parameter

can

be

a

variable

length

array.

The

necessary

size

expressions

must

be

provided

in

the

function

definition.

The

compiler

evaluates

the

size

expression

of

a

variably

modified

parameter

on

entry

to

the

function.

For

a

function

declared

with

a

variable

length

array

as

a

parameter,

as

in

the

following,

void

f(int

x,

int

a[][x]);

the

size

of

the

variable

length

array

argument

must

match

that

of

the

function

definition.

Related

References

v

“Calling

Functions

and

Passing

Arguments”

on

page

133

Initializing

Arrays

The

initializer

for

an

array

is

a

comma-separated

list

of

constant

expressions

enclosed

in

braces

({

}).

The

initializer

is

preceded

by

an

equal

sign

(=).

You

do

not

need

to

initialize

all

elements

in

an

array.

If

an

array

is

partially

initialized,

elements

that

are

not

initialized

receive

the

value

0

of

the

appropriate

type.

The

same

applies

to

elements

of

arrays

with

static

storage

duration.

(All

file-scope

variables

and

function-scope

variables

declared

with

the

static

keyword

have

static

storage

duration.)

The

following

definition

shows

a

completely

initialized

one-dimensional

array:

static

int

number[3]

=

{

5,

7,

2

};

The

array

number

contains

the

following

values:

number[0]

is

5,

number[1]

is

7;

number[2]

is

2.

When

you

have

an

expression

in

the

subscript

declarator

defining

the

number

of

elements

(in

this

case

3),

you

cannot

have

more

initializers

than

the

number

of

elements

in

the

array.

The

following

definition

shows

a

partially

initialized

one-dimensional

array:

static

int

number1[3]

=

{

5,

7

};

Initializers

76

C

Language

Reference

The

values

of

number1

are:number1[0]

and

number1[1]

are

the

same

as

in

the

previous

definition,

but

number1[2]

is

0.

Instead

of

an

expression

in

the

subscript

declarator

defining

the

number

of

elements,

the

following

one-dimensional

array

definition

defines

one

element

for

each

initializer

specified:

static

int

item[

]

=

{

1,

2,

3,

4,

5

};

The

compiler

gives

item

the

five

initialized

elements,

because

no

size

was

specified

and

there

are

five

initializers.

You

can

initialize

a

one-dimensional

character

array

by

specifying:

v

A

brace-enclosed

comma-separated

list

of

constants,

each

of

which

can

be

contained

in

a

character

v

A

string

constant

(Braces

surrounding

the

constant

are

optional)

Initializing

a

string

constant

places

the

null

character

(\0)

at

the

end

of

the

string

if

there

is

room

or

if

the

array

dimensions

are

not

specified.

The

following

definitions

show

character

array

initializations:

static

char

name1[

]

=

{

’J’,

’a’,

’n’

};

static

char

name2[

]

=

{

"Jan"

};

static

char

name3[4]

=

"Jan";

These

definitions

create

the

following

elements:

Element

Value

Element

Value

Element

Value

name1[0]

J

name2[0]

J

name3[0]

J

name1[1]

a

name2[1]

a

name3[1]

a

name1[2]

n

name2[2]

n

name3[2]

n

name2[3]

\0

name3[3]

\0

Note

that

the

following

definition

would

result

in

the

null

character

being

lost:

static

char

name3[3]="Jan";

You

can

initialize

a

multidimensional

array

using

any

of

the

following

techniques:

v

Listing

the

values

of

all

elements

you

want

to

initialize,

in

the

order

that

the

compiler

assigns

the

values.

The

compiler

assigns

values

by

increasing

the

subscript

of

the

last

dimension

fastest.

This

form

of

a

multidimensional

array

initialization

looks

like

a

one-dimensional

array

initialization.

The

following

definition

completely

initializes

the

array

month_days:

static

month_days[2][12]

=

{

31,

28,

31,

30,

31,

30,

31,

31,

30,

31,

30,

31,

31,

29,

31,

30,

31,

30,

31,

31,

30,

31,

30,

31

};

v

Using

braces

to

group

the

values

of

the

elements

you

want

initialized.

You

can

put

braces

around

each

element,

or

around

any

nesting

level

of

elements.

The

following

definition

contains

two

elements

in

the

first

dimension

(you

can

consider

these

elements

as

rows).

The

initialization

contains

braces

around

each

of

these

two

elements:

static

int

month_days[2][12]

=

{

{

31,

28,

31,

30,

31,

30,

31,

31,

30,

31,

30,

31

},

{

31,

29,

31,

30,

31,

30,

31,

31,

30,

31,

30,

31

}

};

Initializers

Chapter

4.

Declarators

77

v

Using

nested

braces

to

initialize

dimensions

and

elements

in

a

dimension

selectively.

The

following

definition

explicitly

initializes

six

elements

in

a

12-element

array:

static

int

matrix[3][4]

=

{

{1,

2},

{3,

4},

{5,

6}

};

The

initial

values

of

matrix

are

shown

in

the

following

table.

All

other

elements

are

initialized

to

zero.

Element

Value

Element

Value

matrix[0][0]

1

matrix[1][2]

0

matrix[0][1]

2

matrix[1][3]

0

matrix[0][2]

0

matrix[2][0]

5

matrix[0][3]

0

matrix[2][1]

6

matrix[1][0]

3

matrix[2][2]

0

matrix[1][1]

4

matrix[2][3]

0

Initializing

Arrays

Using

Designated

Initializers

C

supports

designated

initializers

for

aggregate

types.

A

designator

points

out

a

particular

array

element

to

be

initialized,

and

is

of

the

form

″[index]″,

where

index

is

a

constant

expression.

A

designator

list

is

a

combination

of

one

or

more

designators

for

any

of

the

aggregate

types.

A

designator

list

followed

by

an

equal

sign

constitutes

a

designation.

In

the

absence

of

designations,

initialization

of

an

array

occurs

in

the

order

indicated

by

the

initializer.

When

a

designation

appears

in

an

initializer,

the

array

element

indicated

by

the

designator

is

initialized,

and

subsequent

initializations

proceed

forward

in

initializer-list

order,

overriding

any

previously

initialized

array

element,

and

initializing

to

zero

any

array

elements

that

are

not

explicitly

initialized.

The

declaration

syntax

without

a

designated

initializer

uses

braces

to

indicate

initializer

lists,

but

is

referred

to

as

a

bracketed

form.

The

fully

bracketed

and

minimally

bracketed

forms

of

initialization

are

less

likely

to

be

misunderstood.

The

following

are

valid

declarations

of

the

multidimensional

array

matrix

that

achieve

the

same

thing.

All

array

elements

that

are

not

explicitly

initialized,

such

as

the

entire

row

beginning

with

matrix[3][0][0],

are

initialized

to

zero.

/*

minimally

bracketed

form

*/

int

matrix[4][3][2]

=

{

1,

0,

0,

0,

0,

0,

2,

3,

0,

0,

0,

0,

4,

5,

6

};

/*

fully

bracketed

form

*/

int

matrix[4]

[3]

[2]

=

{

{

{

1

},

},

{

{

2,

3

},

},

{

Initializers

78

C

Language

Reference

{

4,

5

},

{

6

}

}

};

/*

incompletely

but

consistently

bracketed

initialization

*/

int

matrix[4]

[3]

[2]

=

{

{

1

},

{

2,

3

},

{

4,

5,

6

}

};

The

overriding

of

previous

subobject

initializations

during

an

array

initialization

is

necessary

behavior

for

the

designated

initializer.

To

illustrate

this,

a

single

designator

is

used

to

″allocate″

space

from

both

ends

of

an

array.

The

designated

initializer,

[MAX-5]

=

8,

means

that

the

array

element

at

subscript

MAX-5

should

be

initialized

to

the

value

8.

The

array

subscripting

brackets

must

enclose

a

constant

expression.

int

a[MAX]

=

{

1,

3,

5,

7,

9,

[MAX-5]

=

8,

6,

4,

2,

0

};

If

MAX

is

15,

a[5]

through

a[9]

will

be

initialized

to

zero.

If

MAX

is

7,

a[2]

through

a[4]

will

first

have

the

values

5,

7,

and

9,

respectively,

which

are

overridden

by

the

values

8,

6,

and

4.

In

other

words,

if

MAX

is

7,

the

initialization

would

be

the

same

as

if

the

declaration

had

been

written:

int

a[MAX]

=

{

1,

3,

8,

6,

4,

2,

0

};

Example

Programs

Using

Arrays

The

following

program

defines

a

floating-point

array

called

prices.

The

first

for

statement

prints

the

values

of

the

elements

of

prices.

The

second

for

statement

adds

five

percent

to

the

value

of

each

element

of

prices,

and

assigns

the

result

to

total,

and

prints

the

value

of

total.

/**

**

Example

of

one-dimensional

arrays

**/

#include

<stdio.h>

#define

ARR_SIZE

5

int

main(void)

{

static

float

const

prices[ARR_SIZE]

=

{

1.41,

1.50,

3.75,

5.00,

.86

};

auto

float

total;

int

i;

for

(i

=

0;

i

<

ARR_SIZE;

i++)

{

printf("price

=

$%.2f\n",

prices[i]);

}

printf("\n");

for

(i

=

0;

i

<

ARR_SIZE;

i++)

{

total

=

prices[i]

*

1.05;

printf("total

=

$%.2f\n",

total);

Initializers

Chapter

4.

Declarators

79

}

return(0);

}

This

program

produces

the

following

output:

price

=

$1.41

price

=

$1.50

price

=

$3.75

price

=

$5.00

price

=

$0.86

total

=

$1.48

total

=

$1.57

total

=

$3.94

total

=

$5.25

total

=

$0.90

The

following

program

defines

the

multidimensional

array

salary_tbl.

A

for

loop

prints

the

values

of

salary_tbl.

/**

**

Example

of

a

multidimensional

array

**/

#include

<stdio.h>

#define

ROW_SIZE

3

#define

COLUMN_SIZE

5

int

main(void)

{

static

int

salary_tbl[ROW_SIZE][COLUMN_SIZE]

=

{

{

500,

550,

600,

650,

700

},

{

600,

670,

740,

810,

880

},

{

740,

840,

940,

1040,

1140

}

};

int

grade

,

step;

for

(grade

=

0;

grade

<

ROW_SIZE;

++grade)

for

(step

=

0;

step

<

COLUMN_SIZE;

++step)

{

printf("salary_tbl[%d]

[%d]

=

%d\n",

grade,

step,

salary_tbl[grade]

[step]);

}

return(0);

}

This

program

produces

the

following

output:

salary_tbl[0]

[0]

=

500

salary_tbl[0]

[1]

=

550

salary_tbl[0]

[2]

=

600

salary_tbl[0]

[3]

=

650

salary_tbl[0]

[4]

=

700

salary_tbl[1]

[0]

=

600

salary_tbl[1]

[1]

=

670

salary_tbl[1]

[2]

=

740

salary_tbl[1]

[3]

=

810

salary_tbl[1]

[4]

=

880

salary_tbl[2]

[0]

=

740

salary_tbl[2]

[1]

=

840

salary_tbl[2]

[2]

=

940

salary_tbl[2]

[3]

=

1040

salary_tbl[2]

[4]

=

1140

Initializers

80

C

Language

Reference

Function

Specifiers

The

function

specifier

inline

is

used

to

make

a

suggestion

to

the

compiler

to

incorporate

the

code

of

a

function

into

the

code

at

the

point

of

the

call.

Instead

of

creating

a

single

set

of

the

function

instructions

in

memory,

the

compiler

is

supposed

to

copy

the

code

from

the

inline

function

directly

into

the

calling

function.

However,

a

standards-compliant

compiler

may

ignore

this

suggestion

for

better

optimization.

Function

Specifiers

Chapter

4.

Declarators

81

82

C

Language

Reference

Chapter

5.

Expressions

and

Operators

Expressions

are

sequences

of

operators,

operands,

and

punctuators

that

specify

a

computation.

The

evaluation

of

expressions

is

based

on

the

operators

that

the

expressions

contain

and

the

context

in

which

they

are

used.

An

expression

can

result

in

a

value

and

can

produce

side

effects.

A

side

effect

is

a

change

in

the

state

of

the

execution

environment.

ISO

C

heeds

points

in

the

execution

sequence

at

which

all

side

effects

of

previous

evaluations

are

complete

and

no

side

effects

of

subsequent

evaluations

will

have

occurred.

Such

times

are

called

sequence

points.

A

scalar

object

may

be

modified

only

once

between

successive

sequence

points;

otherwise,

the

result

is

undefined.

Sequence

points

occur

at

the

completion

of

all

expressions

that

are

not

part

of

a

larger

expression,

such

as

in

the

following

situations:

v

After

the

evaluation

of

the

first

operand

of

a

logical

AND

&&,

logical

OR

||,

conditional

?:,

or

comma

expression

v

After

the

evaluation

of

the

arguments

in

a

function

call

v

At

the

end

of

a

full

declarator

v

At

the

end

of

a

full

expression

v

Before

a

library

function

returns

v

After

the

actions

of

a

formatted

I/O

function

conversion

specifier

v

Before

and

after

a

call

to

a

comparison

function,

and

between

any

call

to

the

comparison

function

and

any

movement

of

the

objects

passed

as

arguments

to

that

function

call

The

term

full

expression

can

mean

an

initializer,

an

expression

statement,

the

expression

in

a

return

statement,

and

the

control

expressions

in

a

conditional,

iterative,

or

switch

statement.

This

includes

each

expression

in

a

for

statement.

Related

References

v

“Lvalues

and

Rvalues”

on

page

86

Operator

Precedence

and

Associativity

Two

operator

characteristics

determine

how

operands

group

with

operators:

precedence

and

associativity.

Precedence

is

the

priority

for

grouping

different

types

of

operators

with

their

operands.

Associativity

is

the

left-to-right

or

right-to-left

order

for

grouping

operands

to

operators

that

have

the

same

precedence.

An

operator’s

precedence

is

meaningful

only

if

other

operators

with

higher

or

lower

precedence

are

present.

Expressions

with

higher-precedence

operators

are

evaluated

first.

The

grouping

of

operands

can

be

forced

by

using

parentheses.

For

example,

in

the

following

statements,

the

value

of

5

is

assigned

to

both

a

and

b

because

of

the

right-to-left

associativity

of

the

=

operator.

The

value

of

c

is

assigned

to

b

first,

and

then

the

value

of

b

is

assigned

to

a.

b

=

9;

c

=

5;

a

=

b

=

c;

Because

the

order

of

subexpression

evaluation

is

not

specified,

you

can

explicitly

force

the

grouping

of

operands

with

operators

by

using

parentheses.

©

Copyright

IBM

Corp.

1998,

2004

83

In

the

expression

a

+

b

*

c

/

d

the

*

and

/

operations

are

performed

before

+

because

of

precedence.

b

is

multiplied

by

c

before

it

is

divided

by

d

because

of

associativity.

The

following

table

lists

the

language

operators

in

order

of

precedence

and

shows

the

direction

of

associativity

for

each

operator.

The

comma

operator

has

the

lowest

precedence.

Operators

that

have

the

same

rank

have

the

same

precedence.

Precedence

and

associativity

of

C

operators

Rank

Right

Associative?

Operator

Function

Usage

1

member

selection

object

.

member

1

member

selection

pointer

->

member

1

subscripting

pointer

[

expr

]

1

function

call

expr

(

expr_list

)

1

value

construction

type

(

expr_list

)

1

postfix

increment

lvalue

++

1

postfix

decrement

lvalue

--

2

yes

size

of

object

in

bytes

sizeof

expr

2

yes

size

of

type

in

bytes

sizeof

(

type

)

2

yes

prefix

increment

++

lvalue

2

yes

prefix

decrement

--

lvalue

2

yes

bitwise

negation

~

expr

2

yes

not

!

expr

2

yes

unary

minus

-

expr

2

yes

unary

plus

+

expr

2

yes

address

of

&

lvalue

2

yes

indirection

or

dereference

*

expr

2

yes

type

conversion

(cast)

(

type

)

expr

3

member

selection

object

.*

ptr_to_member

3

member

selection

object

->*

ptr_to_member

4

multiplication

expr

*

expr

4

division

expr

/

expr

4

modulo

(remainder)

expr

%

expr

5

binary

addition

expr

+

expr

5

binary

subtraction

expr

-

expr

6

bitwise

shift

left

expr

<<

expr

6

bitwise

shift

right

expr

>>

expr

7

less

than

expr

<

expr

7

less

than

or

equal

to

expr

<=

expr

7

greater

than

expr

>

expr

7

greater

than

or

equal

to

expr

>=

expr

8

equal

expr

==

expr

8

not

equal

expr

!=

expr

9

bitwise

AND

expr

&

expr

10

bitwise

exclusive

OR

expr

^

expr

11

bitwise

inclusive

OR

expr

|

expr

12

logical

AND

expr

&&

expr

13

logical

inclusive

OR

expr

||

expr

14

conditional

expression

expr

?

expr

:

expr

Operator

Precedence

and

Associativity

84

C

Language

Reference

Precedence

and

associativity

of

C

operators

Rank

Right

Associative?

Operator

Function

Usage

15

yes

simple

assignment

lvalue

=

expr

15

yes

multiply

and

assign

lvalue

*=

expr

15

yes

divide

and

assign

lvalue

/=

expr

15

yes

modulo

and

assign

lvalue

%=

expr

15

yes

add

and

assign

lvalue

+=

expr

15

yes

subtract

and

assign

lvalue

-=

expr

15

yes

shift

left

and

assign

lvalue

<<=

expr

15

yes

shift

right

and

assign

lvalue

>>=

expr

15

yes

bitwise

AND

and

assign

lvalue

&=

expr

15

yes

bitwise

exclusive

OR

and

assign

lvalue

^=

expr

15

yes

bitwise

inclusive

OR

and

assign

lvalue

|=

expr

16

comma

(sequencing)

expr

,

expr

The

order

of

evaluation

for

function

call

arguments

or

for

the

operands

of

binary

operators

is

not

specified.

Avoid

writing

ambiguous

expressions

such

as:

z

=

(x

*

++y)

/

func1(y);

func2(++i,

x[i]);

In

the

example

above,

++y

and

func1(y)

might

not

be

evaluated

in

the

same

order

by

all

C

language

implementations.

If

y

has

the

value

of

1

before

the

first

statement,

it

is

not

known

whether

or

not

the

value

of

1

or

2

is

passed

to

func1().

In

the

second

statement,

if

i

has

the

value

of

1

before

the

expression

is

evaluated,

it

is

not

known

whether

x[1]

or

x[2]

is

passed

as

the

second

argument

to

func2().

Examples

of

Expressions

and

Precedence

The

parentheses

in

the

following

expressions

explicitly

show

how

the

compiler

groups

operands

and

operators.

total

=

(4

+

(5

*

3));

total

=

(((8

*

5)

/

10)

/

3);

total

=

(10

+

(5/3));

If

parentheses

did

not

appear

in

these

expressions,

the

operands

and

operators

would

be

grouped

in

the

same

manner

as

indicated

by

the

parentheses.

For

example,

the

following

expressions

produce

the

same

output.

total

=

(4+(5*3));

total

=

4+5*3;

Because

the

order

of

grouping

operands

with

operators

that

are

both

associative

and

commutative

is

not

specified,

the

compiler

can

group

the

operands

and

operators

in

the

expression:

total

=

price

+

prov_tax

+

city_tax;

in

the

following

ways

(as

indicated

by

parentheses):

total

=

(price

+

(prov_tax

+

city_tax));

total

=

((price

+

prov_tax)

+

city_tax);

total

=

((price

+

city_tax)

+

prov_tax);

The

grouping

of

operands

and

operators

does

not

affect

the

result

unless

one

ordering

causes

an

overflow

and

another

does

not.

For

example,

if

price

=

32767,

prov_tax

=

-42,

and

city_tax

=

32767,

and

all

three

of

these

variables

have

been

Operator

Precedence

and

Associativity

Chapter

5.

Expressions

and

Operators

85

declared

as

integers,

the

third

statement

total

=

((price

+

city_tax)

+

prov_tax)

will

cause

an

integer

overflow

and

the

rest

will

not.

Because

intermediate

values

are

rounded,

different

groupings

of

floating-point

operators

may

give

different

results.

In

certain

expressions,

the

grouping

of

operands

and

operators

can

affect

the

result.

For

example,

in

the

following

expression,

each

function

call

might

be

modifying

the

same

global

variables.

a

=

b()

+

c()

+

d();

This

expression

can

give

different

results

depending

on

the

order

in

which

the

functions

are

called.

If

the

expression

contains

operators

that

are

both

associative

and

commutative

and

the

order

of

grouping

operands

with

operators

can

affect

the

result

of

the

expression,

separate

the

expression

into

several

expressions.

For

example,

the

following

expressions

could

replace

the

previous

expression

if

the

called

functions

do

not

produce

any

side

effects

that

affect

the

variable

a.

a

=

b();

a

+=

c();

a

+=

d();

Lvalues

and

Rvalues

An

object

is

a

region

of

storage

that

can

be

examined

and

stored

into.

An

lvalue

is

an

expression

that

refers

to

such

an

object.

An

lvalue

does

not

necessarily

permit

modification

of

the

object

it

designates.

For

example,

a

const

object

is

an

lvalue

that

cannot

be

modified.

The

term

modifiable

lvalue

is

used

to

emphasize

that

the

lvalue

allows

the

designated

object

to

be

changed

as

well

as

examined.

The

following

object

types

are

lvalues,

but

not

modifiable

lvalues:

v

An

array

type

v

An

incomplete

type

v

A

const-qualified

type

v

An

object

is

a

structure

or

union

type

and

one

of

its

members

has

a

const-qualified

type

Because

these

lvalues

are

not

modifiable,

they

cannot

appear

on

the

left

side

of

an

assignment

statement.

The

term

rvalue

refers

to

a

data

value

that

is

stored

at

some

address

in

memory.

An

rvalue

is

an

expression

that

cannot

have

a

value

assigned

to

it.

Both

a

literal

constant

and

a

variable

can

serve

as

an

rvalue.

When

an

lvalue

appears

in

a

context

that

requires

an

rvalue,

the

lvalue

is

implicitly

converted

to

an

rvalue.

The

reverse,

however,

is

not

true:

an

rvalue

cannot

be

converted

to

an

lvalue.

Rvalues

always

have

complete

types

or

the

void

type.

ISO

C

defines

a

function

designator

as

an

expression

that

has

function

type

A

function

designator

is

distinct

from

an

object

type

or

an

lvalue.

It

can

be

the

name

of

a

function

or

the

result

of

dereferencing

a

function

pointer.

The

C

language

also

differentiates

between

its

treatment

of

a

function

pointer

and

an

object

pointer.

Certain

operators

require

lvalues

for

some

of

their

operands.

The

table

below

lists

these

operators

and

additional

constraints

on

their

usage.

Operator

Precedence

and

Associativity

86

C

Language

Reference

Operator

Requirement

&

(unary)

Operand

must

be

an

lvalue.

++

--

Operand

must

be

an

lvalue.

This

applies

to

both

prefix

and

postfix

forms.

=

+=

-=

*=

%=

<<=

>>=

&=

^=

|=

Left

operand

must

be

an

lvalue.

For

example,

all

assignment

operators

evaluate

their

right

operand

and

assign

that

value

to

their

left

operand.

The

left

operand

must

be

a

modifiable

lvalue

or

a

reference

to

a

modifiable

object.

The

address

operator

(&)

requires

an

lvalue

as

an

operand

while

the

increment

(++)

and

the

decrement

(--)

operators

require

a

modifiable

lvalue

as

an

operand.

The

following

example

shows

expressions

and

their

corresponding

lvalues.

Expression

Lvalue

x

=

42

x

*ptr

=

newvalue

*ptr

a++

a

The

remainder

of

this

section

is

platform-specific

and

pertains

to

C

only.

When

compiled

with

the

GNU

C

language

extensions

enabled,

compound

expressions,

conditional

expressions,

and

casts

are

allowed

as

lvalues,

provided

that

their

operands

are

lvalues.

A

compound

expression

can

be

assigned

if

the

last

expression

in

the

sequence

is

an

lvalue.

The

following

expressions

are

equivalent:

(x

+

1,

y)

*=

42;

x

+

1,

(y

*=42);

The

address

operator

can

be

applied

to

a

compound

expression,

provided

the

last

expression

in

the

sequence

is

an

lvalue.

The

following

expressions

are

equivalent:

&(x

+

1,

y);

x

+

1,

&y;

A

conditional

expression

can

be

a

valid

lvalue

if

its

type

is

not

void

and

both

of

its

branches

for

true

and

false

are

valid

lvalues.

Casts

are

valid

lvalues

if

the

operand

is

an

lvalue.

The

primary

restriction

is

that

you

cannot

take

the

address

of

an

lvalue

cast.

Related

References

v

“Lvalue-to-Rvalue

Conversions”

on

page

116

Primary

Expressions

Primary

expressions

fall

into

the

following

general

categories:

v

Names

(identifiers)

v

Literals

(constants)

v

Parenthesized

expressions

Names

lvalue

Chapter

5.

Expressions

and

Operators

87

The

value

of

a

name

depends

on

its

type,

which

is

determined

by

how

that

name

is

declared.

The

following

table

shows

whether

a

name

is

an

lvalue

expression.

Primary

expressions:

Names

Name

declared

as

Evaluates

to

Is

an

lvalue

Variable

of

arithmetic,

pointer,

enumeration,

structure,

or

union

type

An

object

of

that

type

Lvalue

Enumeration

constant

The

associated

integer

value

Not

an

lvalue

Array

That

array.

In

contexts

subject

to

conversions,

a

pointer

to

the

first

object

in

the

array,

except

where

the

name

is

used

as

the

argument

to

the

sizeof

operator.

Not

an

lvalue

Function

That

function.

In

contexts

subject

to

conversions,

a

pointer

to

that

function,

except

where

the

name

is

used

as

the

argument

to

the

sizeof

operator,

or

as

the

function

in

a

function

call

expression.

Not

an

lvalue

As

an

expression,

a

name

may

not

refer

to

a

label,

typedef

name,

structure

component

name,

union

component

name,

structure

tag,

union

tag,

or

enumeration

tag.

Names

that

can

be

referred

to

by

a

name

in

an

expression

reside

in

a

name

space

that

is

separate

from

that

of

names

for

these

purposes.

Some

of

these

names

may

be

referred

to

within

expressions

by

means

of

special

constructs.

For

example,

the

dot

or

arrow

operators

may

be

used

to

refer

to

structure

and

union

component

names;

typedef

names

may

be

used

in

casts

or

as

an

argument

to

the

sizeof

operator.

Literals

A

literal

is

a

numeric

constant

or

string

literal.

When

a

literal

is

evaluated

as

an

expression,

its

value

is

a

constant.

A

lexical

constant

is

never

an

lvalue.

However,

a

string

literal

is

an

lvalue.

Related

References

v

“Literals”

on

page

16

Integer

Constant

Expressions

An

integer

compile-time

constant

is

a

value

that

is

determined

during

compilation

and

cannot

be

changed

at

run

time.

An

integer

compile-time

constant

expression

is

an

expression

that

is

composed

of

constants

and

evaluated

to

a

constant.

An

integer

constant

expression

is

an

expression

that

is

composed

of

only

the

following:

v

literals

v

enumerators

v

const

variables

v

static

data

members

of

integral

or

enumeration

types

v

casts

to

integral

types

v

sizeof

expressions,

where

the

operand

is

not

a

variable

length

array

lvalue

88

C

Language

Reference

The

sizeof

operator

applied

to

a

variable

length

array

type

is

evaluated

at

run

time,

and

therefore

is

not

a

constant

expression.

You

must

use

an

integer

constant

expression

in

the

following

situations:

v

In

the

subscript

declarator

as

the

description

of

an

array

bound.

v

After

the

keyword

case

in

a

switch

statement.

v

In

an

enumerator,

as

the

numeric

value

of

an

enum

constant.

v

In

a

bit-field

width

specifier.

v

In

the

preprocessor

#if

statement.

(Enumeration

constants,

address

constants,

and

sizeof

cannot

be

specified

in

a

preprocessor

#if

statement.)

Related

References

v

“sizeof

Operator”

on

page

98

Parenthesized

Expressions

(

)

Use

parentheses

to

explicitly

force

the

order

of

expression

evaluation.

The

following

expression

does

not

use

parentheses

to

group

operands

and

operators.

The

parentheses

surrounding

weight,

zipcode

are

used

to

form

a

function

call.

Note

how

the

compiler

groups

the

operands

and

operators

in

the

expression

according

to

the

rules

for

operator

precedence

and

associativity:

handling- discount item +

+

*

*

(weight

expression

expression

unary minus

function call

parameters

expression

zipcode),

lvalue

Chapter

5.

Expressions

and

Operators

89

The

following

expression

is

similar

to

the

previous

expression,

but

it

contains

parentheses

that

change

how

the

operands

and

operators

are

grouped:

handlingitem +

+

*

*

((weight

expression

expression

expression

parenthesized expression

function callexpression

expression

zipcode)),

parameters

- discount

unary minus

In

an

expression

that

contains

both

associative

and

commutative

operators,

you

can

use

parentheses

to

specify

the

grouping

of

operands

with

operators.

The

parentheses

in

the

following

expression

guarantee

the

order

of

grouping

operands

with

the

operators:

x

=

f

+

(g

+

h);

Postfix

Expressions

Postfix

operators

are

operators

that

appear

after

their

operands.

A

postfix

expression

is

a

primary

expression,

or

a

primary

expression

that

contains

a

postfix

operator.

The

following

summarizes

the

available

postfix

operators:

Precedence

and

associativity

of

postfix

operators

Rank

Right

Associative?

Operator

Function

Usage

1

member

selection

object

.

member

1

member

selection

pointer

->

member

1

subscripting

pointer

[

expr

]

1

function

call

expr

(

expr_list

)

1

value

construction

type

(

expr_list

)

1

postfix

increment

lvalue

++

1

postfix

decrement

lvalue

--

Function

Call

Operator

(

)

A

function

call

is

an

expression

containing

a

simple

type

name

and

a

parenthesized

argument

list.

The

argument

list

can

contain

any

number

of

expressions

separated

by

commas.

It

can

also

be

empty.

lvalue

90

C

Language

Reference

For

example:

stub()

overdue(account,

date,

amount)

notify(name,

date

+

5)

report(error,

time,

date,

++num)

Any

function

may

call

itself

except

for

the

function

main.

Type

of

a

Function

Call

The

type

of

a

function

call

expression

is

the

return

type

of

the

function.

This

type

can

either

be

a

complete

type,

a

reference

type,

or

the

type

void.

A

function

call

is

an

lvalue

if

and

only

if

the

type

of

the

function

is

a

reference.

Arguments

and

Parameters

A

function

argument

is

an

expression

that

you

use

within

the

parentheses

of

a

function

call.

A

function

parameter

is

an

object

or

reference

declared

within

the

parentheses

of

a

function

declaration

or

definition.

When

you

call

a

function,

the

arguments

are

evaluated,

and

each

parameter

is

initialized

with

the

value

of

the

corresponding

argument.

The

semantics

of

argument

passing

are

identical

to

those

of

assignment.

A

function

can

change

the

values

of

its

non-const

parameters,

but

these

changes

have

no

effect

on

the

argument

unless

the

parameter

is

a

reference

type.

Linkage

and

Function

Calls

In

C,

if

a

function

definition

has

external

linkage

and

a

return

type

of

int,

calls

to

the

function

can

be

made

before

it

is

explicitly

declared

because

an

implicit

declaration

of

extern

int

func();

is

assumed.

Type

Conversions

of

Arguments

Arguments

that

are

arrays

or

functions

are

converted

to

pointers

before

being

passed

as

function

arguments.

Arguments

passed

to

nonprototyped

C

functions

undergo

conversions:

type

short

or

char

parameters

are

converted

to

int,

and

float

parameters

to

double.

Use

a

cast

expression

for

other

conversions.

The

compiler

compares

the

data

types

provided

by

the

calling

function

with

the

data

types

that

the

called

function

expects

and

performs

necessary

type

conversions.

For

example,

when

function

funct

is

called,

argument

f

is

converted

to

a

double,

and

argument

c

is

converted

to

an

int:

char

*

funct

(double

d,

int

i);

/*

...

*/

int

main(void)

{

float

f;

char

c;

funct(f,

c)

/*

f

is

converted

to

a

double,

c

is

converted

to

an

int

*/

return

0;

}

Evaluation

Order

of

Arguments

lvalue

Chapter

5.

Expressions

and

Operators

91

The

order

in

which

arguments

are

evaluated

is

not

specified.

Avoid

such

calls

as:

method(sample1,

batch.process--,

batch.process);

In

this

example,

batch.process--

might

be

evaluated

last,

causing

the

last

two

arguments

to

be

passed

with

the

same

value.

Example

of

Function

Calls

In

the

following

example,

main

passes

func

two

values:

5

and

7.

The

function

func

receives

copies

of

these

values

and

accesses

them

by

the

identifiers:

a

and

b.

The

function

func

changes

the

value

of

a.

When

control

passes

back

to

main,

the

actual

values

of

x

and

y

are

not

changed.

The

called

function

func

only

receives

copies

of

the

values

of

x

and

y,

not

the

variables

themselves.

/**

**

This

example

illustrates

function

calls

**/

#include

<stdio.h>

void

func

(int

a,

int

b)

{

a

+=

b;

printf("In

func,

a

=

%d

b

=

%d\n",

a,

b);

}

int

main(void)

{

int

x

=

5,

y

=

7;

func(x,

y);

printf("In

main,

x

=

%d

y

=

%d\n",

x,

y);

return

0;

}

This

program

produces

the

following

output:

In

func,

a

=

12

b

=

7

In

main,

x

=

5

y

=

7

Array

Subscripting

Operator

[

]

A

postfix

expression

followed

by

an

expression

in

[

]

(brackets)

specifies

an

element

of

an

array.

The

expression

within

the

brackets

is

referred

to

as

a

subscript.

The

first

element

of

an

array

has

the

subscript

zero.

By

definition,

the

expression

a[b]

is

equivalent

to

the

expression

*((a)

+

(b)),

and,

because

addition

is

associative,

it

is

also

equivalent

to

b[a].

Between

expressions

a

and

b,

one

must

be

a

pointer

to

a

type

T,

and

the

other

must

have

integral

or

enumeration

type.

The

result

of

an

array

subscript

is

an

lvalue.

The

following

example

demonstrates

this:

#include

<stdio.h>

int

main(void)

{

int

a[3]

=

{

10,

20,

30

};

printf("a[0]

=

%d\n",

a[0]);

printf("a[1]

=

%d\n",

1[a]);

printf("a[2]

=

%d\n",

*(2

+

a));

return

0;

}

The

following

is

the

output

of

the

above

example:

lvalue

92

C

Language

Reference

a[0]

=

10

a[1]

=

20

a[2]

=

30

C99

allows

array

subscripting

on

arrays

that

are

not

lvalues.

However,

using

the

address

of

a

non-lvalue

as

an

array

subscript

is

still

not

allowed.

The

following

example

is

valid

in

C99,

but

not

in

C89:

struct

trio{int

a[3];};

struct

trio

f();

foo

(int

index)

{

return

f().a[index];

}

The

first

element

of

each

array

has

the

subscript

0.

The

expression

contract[35]

refers

to

the

36th

element

in

the

array

contract.

In

a

multidimensional

array,

you

can

reference

each

element

(in

the

order

of

increasing

storage

locations)

by

incrementing

the

right-most

subscript

most

frequently.

For

example,

the

following

statement

gives

the

value

100

to

each

element

in

the

array

code[4][3][6]:

for

(first

=

0;

first

<

4;

++first)

{

for

(second

=

0;

second

<

3;

++second)

{

for

(third

=

0;

third

<

6;

++third)

{

code[first][second][third]

=

100;

}

}

}

Dot

Operator

.

The

.

(dot)

operator

is

used

to

access

class,

structure,

or

union

members.

The

member

is

specified

by

a

postfix

expression,

followed

by

a

.

(dot)

operator,

followed

by

a

possibly

qualified

identifier.

The

postfix

expression

must

be

an

object

of

type

class,

struct

or

union.

The

name

must

be

a

member

of

that

object.

The

value

of

the

expression

is

the

value

of

the

selected

member.

If

the

postfix

expression

and

the

name

are

lvalues,

the

expression

value

is

also

an

lvalue.

If

the

postfix

expression

is

type-qualified,

the

same

type

qualifiers

will

apply

to

the

designated

member

in

the

resulting

expression.

Arrow

Operator

−>

The

->

(arrow)

operator

is

used

to

access

class,

structure

or

union

members

using

a

pointer.

A

postfix

expression,

followed

by

an

->

(arrow)

operator,

followed

by

a

possibly

qualified

identifier

or

a

pseudo-destructor

name,

designates

a

member

of

the

object

to

which

the

pointer

points.

(A

pseudo-destructor

is

a

destructor

of

a

nonclass

type.)

The

postfix

expression

must

be

a

pointer

to

an

object

of

type

class,

struct

or

union.

The

name

must

be

a

member

of

that

object.

The

value

of

the

expression

is

the

value

of

the

selected

member.

If

the

name

is

an

lvalue,

the

expression

value

is

also

an

lvalue.

If

the

expression

is

a

pointer

to

a

qualified

type,

the

same

type-qualifiers

will

apply

to

the

designated

member

in

the

resulting

expression.

lvalue

Chapter

5.

Expressions

and

Operators

93

Related

References

v

“Dot

Operator

.”

on

page

93

Unary

Expressions

A

unary

expression

contains

one

operand

and

a

unary

operator.

All

unary

operators

have

the

same

precedence

and

have

right-to-left

associativity.

A

unary

expression

is

therefore

a

postfix

expression.

As

indicated

in

the

following

descriptions,

the

usual

arithmetic

conversions

are

performed

on

the

operands

of

most

unary

expressions.

The

following

table

summarizes

the

operators

for

unary

expressions:

Precedence

and

associativity

of

unary

operators

Rank

Right

Associative?

Operator

Function

Usage

2

yes

size

of

object

in

bytes

sizeof

(

expr

)

2

yes

size

of

type

in

bytes

sizeof

type

2

yes

prefix

increment

++

lvalue

2

yes

prefix

decrement

--

lvalue

2

yes

complement

~

expr

2

yes

not

!

expr

2

yes

unary

minus

-

expr

2

yes

unary

plus

+

expr

2

yes

address

of

&

lvalue

2

yes

indirection

or

dereference

*

expr

2

yes

type

conversion

(cast)

(

type

)

expr

C99

adds

the

unary

operator

_Pragma,

which

allows

a

preprocessor

macro

to

contain

a

pragma

directive.

XL

C/C++

extends

the

C99

and

C++

standards

to

support

the

unary

operators

__real__

and

__imag__.

These

operators

provide

the

ability

to

extract

the

real

and

imaginary

parts

of

a

complex

type.

These

extensions

have

been

implemented

to

ease

the

porting

applications

developed

with

GNU

C

and

C++.

Related

References

v

“Complex

Literals”

on

page

20

Increment

++

The

++

(increment)

operator

adds

1

to

the

value

of

a

scalar

operand,

or

if

the

operand

is

a

pointer,

increments

the

operand

by

the

size

of

the

object

to

which

it

points.

The

operand

receives

the

result

of

the

increment

operation.

The

operand

must

be

a

modifiable

lvalue

of

arithmetic

or

pointer

type.

You

can

put

the

++

before

or

after

the

operand.

If

it

appears

before

the

operand,

the

operand

is

incremented.

The

incremented

value

is

then

used

in

the

expression.

If

you

put

the

++

after

the

operand,

the

value

of

the

operand

is

used

in

the

expression

before

the

operand

is

incremented.

For

example:

play

=

++play1

+

play2++;

is

similar

to

the

following

expressions;

play2

is

altered

before

play:

lvalue

94

C

Language

Reference

int

temp,

temp1,

temp2;

temp1

=

play1

+

1;

temp2

=

play2;

play1

=

temp1;

temp

=

temp1

+

temp2;

play2

=

play2

+

1;

play

=

temp;

The

result

has

the

same

type

as

the

operand

after

integral

promotion.

The

usual

arithmetic

conversions

on

the

operand

are

performed.

Decrement

−−

The

--

(decrement)

operator

subtracts

1

from

the

value

of

a

scalar

operand,

or

if

the

operand

is

a

pointer,

decreases

the

operand

by

the

size

of

the

object

to

which

it

points.

The

operand

receives

the

result

of

the

decrement

operation.

The

operand

must

be

a

modifiable

lvalue.

You

can

put

the

--

before

or

after

the

operand.

If

it

appears

before

the

operand,

the

operand

is

decremented,

and

the

decremented

value

is

used

in

the

expression.

If

the

--

appears

after

the

operand,

the

current

value

of

the

operand

is

used

in

the

expression

and

the

operand

is

decremented.

For

example:

play

=

--play1

+

play2--;

is

similar

to

the

following

expressions;

play2

is

altered

before

play:

int

temp,

temp1,

temp2;

temp1

=

play1

-

1;

temp2

=

play2;

play1

=

temp1;

temp

=

temp1

+

temp2;

play2

=

play2

-

1;

play

=

temp;

The

result

has

the

same

type

as

the

operand

after

integral

promotion,

but

is

not

an

lvalue.

The

usual

arithmetic

conversions

are

performed

on

the

operand.

Unary

Plus

+

The

+

(unary

plus)

operator

maintains

the

value

of

the

operand.

The

operand

can

have

any

arithmetic

type

or

pointer

type.

The

result

is

not

an

lvalue.

The

result

has

the

same

type

as

the

operand

after

integral

promotion.

Note:

Any

plus

sign

in

front

of

a

constant

is

not

part

of

the

constant.

Unary

Minus

−

The

-

(unary

minus)

operator

negates

the

value

of

the

operand.

The

operand

can

have

any

arithmetic

type.

The

result

is

not

an

lvalue.

For

example,

if

quality

has

the

value

100,

-quality

has

the

value

-100.

The

result

has

the

same

type

as

the

operand

after

integral

promotion.

Unary

Expressions

Chapter

5.

Expressions

and

Operators

95

Note:

Any

minus

sign

in

front

of

a

constant

is

not

part

of

the

constant.

Logical

Negation

!

The

!

(logical

negation)

operator

determines

whether

the

operand

evaluates

to

0

(false)

or

nonzero

(true).

The

expression

yields

the

value

1

(true)

if

the

operand

evaluates

to

0,

and

yields

the

value

0

(false)

if

the

operand

evaluates

to

a

nonzero

value.

The

following

two

expressions

are

equivalent:

!right;

right

==

0;

Bitwise

Negation

~

The

~

(bitwise

negation)

operator

yields

the

bitwise

complement

of

the

operand.

In

the

binary

representation

of

the

result,

every

bit

has

the

opposite

value

of

the

same

bit

in

the

binary

representation

of

the

operand.

The

operand

must

have

an

integral

type.

The

result

has

the

same

type

as

the

operand

but

is

not

an

lvalue.

Suppose

x

represents

the

decimal

value

5.

The

16-bit

binary

representation

of

x

is:

0000000000000101

The

expression

~x

yields

the

following

result

(represented

here

as

a

16-bit

binary

number):

1111111111111010

Note

that

the

~

character

can

be

represented

by

the

trigraph

??-.

The

16-bit

binary

representation

of

~0

is:

1111111111111111

Address

&

The

&

(address)

operator

yields

a

pointer

to

its

operand.

The

operand

must

be

an

lvalue,

a

function

designator,

or

a

qualified

name.

It

cannot

be

a

bit

field,

nor

can

it

have

the

storage

class

register.

If

the

operand

is

an

lvalue

or

function,

the

resulting

type

is

a

pointer

to

the

expression

type.

For

example,

if

the

expression

has

type

int,

the

result

is

a

pointer

to

an

object

having

type

int.

If

the

operand

is

a

qualified

name

and

the

member

is

not

static,

the

result

is

a

pointer

to

a

member

of

class

and

has

the

same

type

as

the

member.

The

result

is

not

an

lvalue.

If

p_to_y

is

defined

as

a

pointer

to

an

int

and

y

as

an

int,

the

following

expression

assigns

the

address

of

the

variable

y

to

the

pointer

p_to_y

:

p_to_y

=

&y;

The

address

of

a

label

can

be

taken

using

the

GNU

C

address

operator

&&.

The

label

can

thus

be

used

as

a

value.

Related

References

v

“Pointers”

on

page

69

Unary

Expressions

96

C

Language

Reference

Indirection

*

The

*

(indirection)

operator

determines

the

value

referred

to

by

the

pointer-type

operand.

The

operand

cannot

be

a

pointer

to

an

incomplete

type.

If

the

operand

points

to

an

object,

the

operation

yields

an

lvalue

referring

to

that

object.

If

the

operand

points

to

a

function,

the

result

is

a

function

designator

in

C

or,

in

C++,

an

lvalue

referring

to

the

object

to

which

the

operand

points.

Arrays

and

functions

are

converted

to

pointers.

The

type

of

the

operand

determines

the

type

of

the

result.

For

example,

if

the

operand

is

a

pointer

to

an

int,

the

result

has

type

int.

Do

not

apply

the

indirection

operator

to

any

pointer

that

contains

an

address

that

is

not

valid,

such

as

NULL.

The

result

is

not

defined.

If

p_to_y

is

defined

as

a

pointer

to

an

int

and

y

as

an

int,

the

expressions:

p_to_y

=

&y;

*p_to_y

=

3;

cause

the

variable

y

to

receive

the

value

3.

Related

References

v

“Pointers”

on

page

69

alignof

Operator

The

__alignof__

operator

returns

the

number

of

bytes

used

in

the

alignment

of

its

operand.

The

language

feature

is

orthogonal

to

C89

and

C99.

The

operand

can

be

an

expression

or

a

parenthesized

type

identifier.

If

the

operand

is

an

expression

representing

an

lvalue,

the

number

returned

by

__alignof__

represents

the

alignment

that

the

lvalue

is

known

to

have.

The

type

of

the

expression

is

determined

at

compile

time,

but

the

expression

itself

is

not

evaluated.

If

the

operand

is

a

type,

the

number

represents

the

alignment

usually

required

for

the

type

on

the

target

platform.

The

__alignof__

operator

may

not

be

applied

to

the

following:

v

An

lvalue

representing

a

bit

field

v

A

function

type

v

An

undefined

structure

or

class

v

An

incomplete

type

(such

as

void)

An

__alignof__

expression

has

the

form:

��

__alignof__

unary_expression

(

type-id

)

��

If

type-id

is

a

reference

or

a

referenced

type,

the

result

is

the

alignment

of

the

referenced

type.

If

type-id

is

an

array,

the

result

is

the

alignment

of

the

array

element

type.

If

type-id

is

a

fundamental

type,

the

result

is

implementation-defined.

For

example,

on

AIX,

__alignof__(wchar_t)

returns

2

for

a

32-bit

target,

and

4

for

a

64-bit

target.

Related

References

v

“The

aligned

Variable

Attribute”

on

page

26

Unary

Expressions

Chapter

5.

Expressions

and

Operators

97

sizeof

Operator

The

sizeof

operator

yields

the

size

in

bytes

of

the

operand,

which

can

be

an

expression

or

the

parenthesized

name

of

a

type.

A

sizeof

expression

has

the

form:

��

sizeof

expr

(

type-name

)

��

The

result

for

either

kind

of

operand

is

not

an

lvalue,

but

a

constant

integer

value.

The

type

of

the

result

is

the

unsigned

integral

type

size_t

defined

in

the

header

file

stddef.h.

The

sizeof

operator

applied

to

a

type

name

yields

the

amount

of

memory

that

would

be

used

by

an

object

of

that

type,

including

any

internal

or

trailing

padding.

The

size

of

any

of

the

three

kinds

of

char

objects

(unsigned,

signed,

or

plain)

is

the

size

of

a

byte,

1.

If

the

operand

is

a

variable

length

array

type,

the

operand

is

evaluated.

The

sizeof

operator

may

not

be

applied

to:

v

A

bit

field

v

A

function

type

v

An

undefined

structure

or

class

v

An

incomplete

type

(such

as

void)

The

sizeof

operator

applied

to

an

expression

yields

the

same

result

as

if

it

had

been

applied

to

only

the

name

of

the

type

of

the

expression.

At

compile

time,

the

compiler

analyzes

the

expression

to

determine

its

type,

but

does

not

evaluate

it.

None

of

the

usual

type

conversions

that

occur

in

the

type

analysis

of

the

expression

are

directly

attributable

to

the

sizeof

operator.

However,

if

the

operand

contains

operators

that

perform

conversions,

the

compiler

does

take

these

conversions

into

consideration

in

determining

the

type.

The

second

line

of

the

following

sample

causes

the

usual

arithmetic

conversions

to

be

performed.

Assuming

that

a

short

uses

2

bytes

of

storage

and

an

int

uses

4

bytes,

short

x;

...

sizeof

(x)

/*

the

value

of

sizeof

operator

is

2

*/

short

x;

...

sizeof

(x

+

1)

/*

value

is

4,

result

of

addition

is

type

int

*/

The

result

of

the

expression

x

+

1

has

type

int

and

is

equivalent

to

sizeof(int).

The

value

is

also

4

if

x

has

type

char,

short,

or

int

or

any

enumeration

type.

Types

cannot

be

defined

in

a

sizeof

expression.

In

the

following

example,

the

compiler

is

able

to

evaluate

the

size

at

compile

time.

The

operand

of

sizeof,

an

expression,

is

not

evaluated.

The

value

of

b

is

the

integer

constant

5,

from

initialization

to

the

end

of

program

run

time:

#include

<stdio.h>

int

main(void){

int

b

=

5;

sizeof(b++);

return

0;

}

Except

in

preprocessor

directives,

you

can

use

a

sizeof

expression

wherever

an

integral

constant

is

required.

One

of

the

most

common

uses

for

the

sizeof

operator

is

to

determine

the

size

of

objects

that

are

referred

to

during

storage

allocation,

input,

and

output

functions.

Unary

Expressions

98

C

Language

Reference

Another

use

of

sizeof

is

in

porting

code

across

platforms.

You

should

use

the

sizeof

operator

to

determine

the

size

that

a

data

type

represents.

For

example:

sizeof(int);

The

result

of

a

sizeof

expression

depends

on

the

type

it

is

applied

to.

Operand

Result

An

array

The

result

is

the

total

number

of

bytes

in

the

array.

For

example,

in

an

array

with

10

elements,

the

size

is

equal

to

10

times

the

size

of

a

single

element.

The

compiler

does

not

convert

the

array

to

a

pointer

before

evaluating

the

expression.

typeof

Operator

The

typeof

operator

returns

the

type

of

its

argument,

which

can

be

an

expression

or

a

type.

The

language

feature

provides

a

way

to

derive

the

type

from

an

expression.

The

alternate

spelling

of

the

keyword,

__typeof__,

is

recommended.

Given

an

expression

e,

__typeof__(e)

can

be

used

anywhere

a

type

name

is

needed,

for

example

in

a

declaration

or

in

a

cast.

The

typeof

operator

is

an

orthogonal

language

extension

provided

for

handling

programs

developed

with

GNU

C.

A

typeof

construct

is

of

the

form:

��

__typeof__

typeof

(

expr

)

type-name

��

A

typeof

construct

itself

is

not

an

expression,

but

the

name

of

a

type.

A

typeof

construct

behaves

like

a

type

name

defined

using

typedef,

although

the

syntax

resembles

that

of

sizeof.

The

following

examples

illustrate

its

basic

syntax.

For

an

expression

e:

int

e;

__typeof__(e

+

1)

j;

/*

the

same

as

declaring

int

j;

*/

e

=

(__typeof__(e))

f;

/*

the

same

as

casting

e

=

(int)

f;

*/

Using

a

typeof

construct

is

equivalent

to

declaring

a

typedef

name.

Given

int

T[2];

int

i[2];

you

can

write

__typeof__(i)

a;

/*

all

three

constructs

have

the

same

meaning

*/

__typeof__(int[2])

a;

__typeof__(T)

a;

The

behavior

of

the

code

is

as

if

you

had

declared

int

a[2];.

For

a

bit

field,

typeof

represents

the

underlying

type

of

the

bit

field.

For

example,

int

m:2;,

the

typeof(m)

is

int.

Since

the

bit

field

property

is

not

reserved,

n

in

typeof(m)

n;

is

the

same

as

int

n,

but

not

int

n:2.

The

typeof

operator

can

be

nested

inside

sizeof

and

itself.

The

following

declarations

of

arr

as

an

array

of

pointers

to

int

are

equivalent:

int

*arr[10];

/*

traditional

C

declaration

*/

__typeof__(__typeof__

(int

*)[10])

a;

/*

equivalent

declaration

*/

Unary

Expressions

Chapter

5.

Expressions

and

Operators

99

The

typeof

operator

can

be

useful

in

macro

definitions

where

expression

e

is

a

parameter.

For

example,

#define

SWAP(a,b)

{

__typeof__(a)

temp;

temp

=

a;

a

=

b;

b

=

temp;

}

Label

Value

Operator

&&

The

label

value

operator

&&

returns

the

address

of

its

operand,

which

must

be

a

label

defined

in

the

current

function

or

a

containing

function.

The

value

is

a

constant

of

type

void*

and

should

be

used

only

in

a

computed

goto

statement.

The

language

feature

is

an

orthogonal

extension

to

C,

implemented

to

facilitate

porting

programs

developed

with

GNU

C.

Related

References

v

“Labels

as

Values”

on

page

142

v

“Computed

goto”

on

page

157

Cast

Expressions

The

cast

operator

is

used

for

explicit

type

conversions.

This

operator

has

the

following

form,

where

T

is

a

type,

and

expr

is

an

expression:

(

T

)

expr

It

converts

the

value

of

expr

to

the

type

T.

In

C,

the

result

of

this

operation

is

not

an

lvalue.

Cast

to

a

Union

Type

Casting

to

a

union

type

is

the

ability

to

cast

a

union

member

to

the

same

type

as

the

union

to

which

it

belongs.

Such

a

cast

does

not

produce

an

lvalue,

unlike

other

casts.

The

feature

is

supported

as

an

orthogonal

extension

to

C99,

implemented

to

facilitate

porting

programs

developed

with

GNU

C.

Only

a

type

that

explicitly

exists

as

a

member

of

a

union

type

can

be

cast

to

that

union

type.

The

cast

can

use

either

the

tag

of

the

union

type

or

a

union

type

name

declared

in

a

typedef

expression.

The

type

specified

must

be

a

complete

union

type.

An

anonymous

union

type

can

be

used

in

a

cast

to

a

union

type,

provided

that

it

has

a

tag

or

type

name.

A

bit

field

can

be

cast

to

a

union

type,

provided

that

the

union

contains

a

bit

field

member

of

the

same

type,

but

not

necessarily

of

the

same

length.

Casting

to

a

nested

union

is

also

allowed.

In

the

following

example,

the

double

type

dd

can

be

cast

to

the

nested

union

u2_t.

int

main()

{

union

u_t

{

char

a;

short

b;

int

c;

union

u2_t

{

double

d;

}u2;

};

union

u_t

U;

double

dd

=

1.234;

U.u2

=

(union

u2_t)

dd;

//

Valid.

printf("U.u2

is

%f\n",

U.u2);

}

The

output

of

this

example

is:

Unary

Expressions

100

C

Language

Reference

U.u2

is

1.234

A

union

cast

is

also

valid

as

a

function

argument,

part

of

a

constant

expression

for

initialization,

and

in

a

compound

literal

statement.

Binary

Expressions

A

binary

expression

contains

two

operands

separated

by

one

operator.

Not

all

binary

operators

have

the

same

precedence.

All

binary

operators

have

left-to-right

associativity.

The

order

in

which

the

operands

of

most

binary

operators

are

evaluated

is

not

specified.

To

ensure

correct

results,

avoid

creating

binary

expressions

that

depend

on

the

order

in

which

the

compiler

evaluates

the

operands.

As

indicated

in

the

following

descriptions,

the

usual

arithmetic

conversions

are

performed

on

the

operands

of

most

binary

expressions.

The

following

table

summarizes

the

operators

for

binary

expressions:

Precedence

and

associativity

of

binary

operators

Rank

Right

Associative?

Operator

Function

Usage

4

multiplication

expr

*

expr

4

division

expr

/

expr

4

modulo

(remainder)

expr

%

expr

5

binary

addition

expr

+

expr

5

binary

subtraction

expr

-

expr

6

bitwise

shift

left

expr

<<

expr

6

bitwise

shift

right

expr

>>

expr

7

less

than

expr

<

expr

7

less

than

or

equal

to

expr

<=

expr

7

greater

than

expr

>

expr

7

greater

than

or

equal

to

expr

>=

expr

8

equal

expr

==

expr

8

not

equal

expr

!=

expr

9

bitwise

AND

expr

&

expr

10

bitwise

exclusive

OR

expr

^

expr

11

bitwise

inclusive

OR

expr

|

expr

12

logical

AND

expr

&&

expr

13

logical

inclusive

OR

expr

||

expr

15

yes

simple

assignment

lvalue

=

expr

15

yes

multiply

and

assign

lvalue

*=

expr

15

yes

divide

and

assign

lvalue

/=

expr

15

yes

modulo

and

assign

lvalue

%=

expr

15

yes

add

and

assign

lvalue

+=

expr

15

yes

subtract

and

assign

lvalue

-=

expr

15

yes

shift

left

and

assign

lvalue

<<=

expr

15

yes

shift

right

and

assign

lvalue

>>=

expr

15

yes

bitwise

AND

and

assign

lvalue

&=

expr

15

yes

bitwise

exclusive

OR

and

assign

lvalue

^=

expr

15

yes

bitwise

inclusive

OR

and

assign

lvalue

|=

expr

17

comma

(sequencing)

expr

,

expr

Cast

Expressions

Chapter

5.

Expressions

and

Operators

101

Related

References

v

“Operator

Precedence

and

Associativity”

on

page

83

v

“Arithmetic

Conversions”

on

page

119

Multiplication

*

The

*

(multiplication)

operator

yields

the

product

of

its

operands.

The

operands

must

have

an

arithmetic

or

enumeration

type.

The

result

is

not

an

lvalue.

The

usual

arithmetic

conversions

on

the

operands

are

performed.

Because

the

multiplication

operator

has

both

associative

and

commutative

properties,

the

compiler

can

rearrange

the

operands

in

an

expression

that

contains

more

than

one

multiplication

operator.

For

example,

the

expression:

sites

*

number

*

cost

can

be

interpreted

in

any

of

the

following

ways:

(sites

*

number)

*

cost

sites

*

(number

*

cost)

(cost

*

sites)

*

number

Division

/

The

/

(division)

operator

yields

the

algebraic

quotient

of

its

operands.

If

both

operands

are

integers,

any

fractional

part

(remainder)

is

discarded.

Throwing

away

the

fractional

part

is

often

called

truncation

toward

zero.

The

operands

must

have

an

arithmetic

or

enumeration

type.

The

right

operand

may

not

be

zero:

the

result

is

undefined

if

the

right

operand

evaluates

to

0.

For

example,

expression

7

/

4

yields

the

value

1

(rather

than

1.75

or

2).

The

result

is

not

an

lvalue.

The

usual

arithmetic

conversions

on

the

operands

are

performed.

Remainder

%

The

%

(remainder)

operator

yields

the

remainder

from

the

division

of

the

left

operand

by

the

right

operand.

For

example,

the

expression

5

%

3

yields

2.

The

result

is

not

an

lvalue.

Both

operands

must

have

an

integral

or

enumeration

type.

If

the

right

operand

evaluates

to

0,

the

result

is

undefined.

If

either

operand

has

a

negative

value,

the

result

is

such

that

the

following

expression

always

yields

the

value

of

a

if

b

is

not

0

and

a/b

is

representable:

(

a

/

b

)

*

b

+

a

%b;

The

usual

arithmetic

conversions

on

the

operands

are

performed.

Addition

+

The

+

(addition)

operator

yields

the

sum

of

its

operands.

Both

operands

must

have

an

arithmetic

type,

or

one

operand

must

be

a

pointer

to

an

object

type

and

the

other

operand

must

have

an

integral

or

enumeration

type.

When

both

operands

have

an

arithmetic

type,

the

usual

arithmetic

conversions

on

the

operands

are

performed.

The

result

has

the

type

produced

by

the

conversions

on

the

operands

and

is

not

an

lvalue.

A

pointer

to

an

object

in

an

array

can

be

added

to

a

value

having

integral

type.

The

result

is

a

pointer

of

the

same

type

as

the

pointer

operand.

The

result

refers

to

another

element

in

the

array,

offset

from

the

original

element

by

the

amount

of

the

Binary

Expressions

102

C

Language

Reference

integral

value

treated

as

a

subscript.

If

the

resulting

pointer

points

to

storage

outside

the

array,

other

than

the

first

location

outside

the

array,

the

result

is

undefined.

A

pointer

to

one

element

past

the

end

of

an

array

cannot

be

used

to

access

the

memory

content

at

that

address.

The

compiler

does

not

provide

boundary

checking

on

the

pointers.

For

example,

after

the

addition,

ptr

points

to

the

third

element

of

the

array:

int

array[5];

int

*ptr;

ptr

=

array

+

2;

Subtraction

−

The

-

(subtraction)

operator

yields

the

difference

of

its

operands.

Both

operands

must

have

an

arithmetic

or

enumeration

type,

or

the

left

operand

must

have

a

pointer

type

and

the

right

operand

must

have

the

same

pointer

type

or

an

integral

or

enumeration

type.

You

cannot

subtract

a

pointer

from

an

integral

value.

When

both

operands

have

an

arithmetic

type,

the

usual

arithmetic

conversions

on

the

operands

are

performed.

The

result

has

the

type

produced

by

the

conversions

on

the

operands

and

is

not

an

lvalue.

When

the

left

operand

is

a

pointer

and

the

right

operand

has

an

integral

type,

the

compiler

converts

the

value

of

the

right

to

an

address

offset.

The

result

is

a

pointer

of

the

same

type

as

the

pointer

operand.

If

both

operands

are

pointers

to

elements

in

the

same

array,

the

result

is

the

number

of

objects

separating

the

two

addresses.

The

number

is

of

type

ptrdiff_t,

which

is

defined

in

the

header

file

stddef.h.

Behavior

is

undefined

if

the

pointers

do

not

refer

to

objects

in

the

same

array.

Bitwise

Left

and

Right

Shift

<<

>>

The

bitwise

shift

operators

move

the

bit

values

of

a

binary

object.

The

left

operand

specifies

the

value

to

be

shifted.

The

right

operand

specifies

the

number

of

positions

that

the

bits

in

the

value

are

to

be

shifted.

The

result

is

not

an

lvalue.

Both

operands

have

the

same

precedence

and

are

left-to-right

associative.

Operator

Usage

<<

Indicates

the

bits

are

to

be

shifted

to

the

left.

>>

Indicates

the

bits

are

to

be

shifted

to

the

right.

Each

operand

must

have

an

integral

or

enumeration

type.

The

compiler

performs

integral

promotions

on

the

operands,

and

then

the

right

operand

is

converted

to

type

int.

The

result

has

the

same

type

as

the

left

operand

(after

the

arithmetic

conversions).

The

right

operand

should

not

have

a

negative

value

or

a

value

that

is

greater

than

or

equal

to

the

width

in

bits

of

the

expression

being

shifted.

The

result

of

bitwise

shifts

on

such

values

is

unpredictable.

If

the

right

operand

has

the

value

0,

the

result

is

the

value

of

the

left

operand

(after

the

usual

arithmetic

conversions).

The

<<

operator

fills

vacated

bits

with

zeros.

For

example,

if

left_op

has

the

value

4019,

the

bit

pattern

(in

16-bit

format)

of

left_op

is:

Binary

Expressions

Chapter

5.

Expressions

and

Operators

103

0000111110110011

The

expression

left_op

<<

3

yields:

0111110110011000

The

expression

left_op

>>

3

yields:

0000000111110110

Relational

<

>

<=

>=

The

relational

operators

compare

two

operands

and

determine

the

validity

of

a

relationship.

The

type

of

the

result

is

int

and

has

the

values

1

if

the

specified

relationship

is

true,

and

0

if

false.

The

result

is

not

an

lvalue.

The

following

table

describes

the

four

relational

operators:

Operator

Usage

<

Indicates

whether

the

value

of

the

left

operand

is

less

than

the

value

of

the

right

operand.

>

Indicates

whether

the

value

of

the

left

operand

is

greater

than

the

value

of

the

right

operand.

<=

Indicates

whether

the

value

of

the

left

operand

is

less

than

or

equal

to

the

value

of

the

right

operand.

>=

Indicates

whether

the

value

of

the

left

operand

is

greater

than

or

equal

to

the

value

of

the

right

operand.

Both

operands

must

have

arithmetic

or

enumeration

types

or

be

pointers

to

the

same

type.

The

result

has

type

int.

If

the

operands

have

arithmetic

types,

the

usual

arithmetic

conversions

on

the

operands

are

performed.

When

the

operands

are

pointers,

the

result

is

determined

by

the

locations

of

the

objects

to

which

the

pointers

refer.

If

the

pointers

do

not

refer

to

objects

in

the

same

array,

the

result

is

not

defined.

A

pointer

can

be

compared

to

a

constant

expression

that

evaluates

to

0.

You

can

also

compare

a

pointer

to

a

pointer

of

type

void*.

The

pointer

is

converted

to

a

pointer

of

type

void*.

If

two

pointers

refer

to

the

same

object,

they

are

considered

equal.

If

two

pointers

refer

to

nonstatic

members

of

the

same

object,

the

pointer

to

the

object

declared

later

is

greater,

provided

that

they

are

not

separated

by

an

access

specifier;

otherwise

the

comparison

is

undefined.

If

two

pointers

refer

to

data

members

of

the

same

union,

they

have

the

same

address

value.

If

two

pointers

refer

to

elements

of

the

same

array,

or

to

the

first

element

beyond

the

last

element

of

an

array,

the

pointer

to

the

element

with

the

higher

subscript

value

is

greater.

Binary

Expressions

104

C

Language

Reference

You

can

only

compare

members

of

the

same

object

with

relational

operators.

Relational

operators

have

left-to-right

associativity.

For

example,

the

expression:

a

<

b

<=

c

is

interpreted

as:

(a

<

b)

<=

c

If

the

value

of

a

is

less

than

the

value

of

b,

the

first

relationship

yields

1.

The

compiler

then

compares

the

value

true

(or

1)

with

the

value

of

c

(integral

promotions

are

carried

out

if

needed).

Equality

==

!=

The

equality

operators,

like

the

relational

operators,

compare

two

operands

for

the

validity

of

a

relationship.

The

equality

operators,

however,

have

a

lower

precedence

than

the

relational

operators.

The

type

of

the

result

is

int

and

has

the

values

1

if

the

specified

relationship

is

true,

and

0

if

false.

The

following

table

describes

the

two

equality

operators:

Operator

Usage

==

Indicates

whether

the

value

of

the

left

operand

is

equal

to

the

value

of

the

right

operand.

!=

Indicates

whether

the

value

of

the

left

operand

is

not

equal

to

the

value

of

the

right

operand.

Both

operands

must

have

arithmetic

or

enumeration

types

or

be

pointers

to

the

same

type,

or

one

operand

must

have

a

pointer

type

and

the

other

operand

must

be

a

pointer

to

void

or

a

null

pointer.

The

result

is

type

int.

If

the

operands

have

arithmetic

types,

the

usual

arithmetic

conversions

on

the

operands

are

performed.

If

the

operands

are

pointers,

the

result

is

determined

by

the

locations

of

the

objects

to

which

the

pointers

refer.

If

one

operand

is

a

pointer

and

the

other

operand

is

an

integer

having

the

value

0,

the

==

expression

is

true

only

if

the

pointer

operand

evaluates

to

NULL.

The

!=

operator

evaluates

to

true

if

the

pointer

operand

does

not

evaluate

to

NULL.

You

can

also

use

the

equality

operators

to

compare

pointers

to

members

that

are

of

the

same

type

but

do

not

belong

to

the

same

object.

The

following

expressions

contain

examples

of

equality

and

relational

operators:

time

<

max_time

==

status

<

complete

letter

!=

EOF

Note:

The

equality

operator

(==)

should

not

be

confused

with

the

assignment

(=)

operator.

For

example,

if

(x

==

3)

evaluates

to

true

(or

1)

if

x

is

equal

to

three.

Equality

tests

like

this

Binary

Expressions

Chapter

5.

Expressions

and

Operators

105

should

be

coded

with

spaces

between

the

operator

and

the

operands

to

prevent

unintentional

assignments.

while

if

(x

=

3)

is

taken

to

be

true

because

(x

=

3)

evaluates

to

a

nonzero

value

(3).

The

expression

also

assigns

the

value

3

to

x.

Related

References

v

“Simple

Assignment

=”

on

page

111

Bitwise

AND

&

The

&

(bitwise

AND)

operator

compares

each

bit

of

its

first

operand

to

the

corresponding

bit

of

the

second

operand.

If

both

bits

are

1’s,

the

corresponding

bit

of

the

result

is

set

to

1.

Otherwise,

it

sets

the

corresponding

result

bit

to

0.

Both

operands

must

have

an

integral

or

enumeration

type.

The

usual

arithmetic

conversions

on

each

operand

are

performed.

The

result

has

the

same

type

as

the

converted

operands.

Because

the

bitwise

AND

operator

has

both

associative

and

commutative

properties,

the

compiler

can

rearrange

the

operands

in

an

expression

that

contains

more

than

one

bitwise

AND

operator.

The

following

example

shows

the

values

of

a,

b,

and

the

result

of

a

&

b

represented

as

16-bit

binary

numbers:

bit

pattern

of

a

0000000001011100

bit

pattern

of

b

0000000000101110

bit

pattern

of

a

&

b

0000000000001100

Note:

The

bitwise

AND

(&)

should

not

be

confused

with

the

logical

AND.

(&&)

operator.

For

example,

1

&

4

evaluates

to

0

while

1

&&

4

evaluates

to

true

Related

References

v

“Logical

AND

&&”

on

page

107

Bitwise

Exclusive

OR

^

The

bitwise

exclusive

OR

operator

(in

EBCDIC,

the

^

symbol

is

represented

by

the

¬

symbol)

compares

each

bit

of

its

first

operand

to

the

corresponding

bit

of

the

second

operand.

If

both

bits

are

1’s

or

both

bits

are

0’s,

the

corresponding

bit

of

the

result

is

set

to

0.

Otherwise,

it

sets

the

corresponding

result

bit

to

1.

Both

operands

must

have

an

integral

or

enumeration

type.

The

usual

arithmetic

conversions

on

each

operand

are

performed.

The

result

has

the

same

type

as

the

converted

operands

and

is

not

an

lvalue.

Because

the

bitwise

exclusive

OR

operator

has

both

associative

and

commutative

properties,

the

compiler

can

rearrange

the

operands

in

an

expression

that

contains

more

than

one

bitwise

exclusive

OR

operator.

Note

that

the

^

character

can

be

represented

by

the

trigraph

??'.

Binary

Expressions

106

C

Language

Reference

The

following

example

shows

the

values

of

a,

b,

and

the

result

of

a

^

b

represented

as

16-bit

binary

numbers:

bit

pattern

of

a

0000000001011100

bit

pattern

of

b

0000000000101110

bit

pattern

of

a

^

b

0000000001110010

Related

References

v

“Trigraph

Sequences”

on

page

11

Bitwise

Inclusive

OR

|

The

|

(bitwise

inclusive

OR)

operator

compares

the

values

(in

binary

format)

of

each

operand

and

yields

a

value

whose

bit

pattern

shows

which

bits

in

either

of

the

operands

has

the

value

1.

If

both

of

the

bits

are

0,

the

result

of

that

bit

is

0;

otherwise,

the

result

is

1.

Both

operands

must

have

an

integral

or

enumeration

type.

The

usual

arithmetic

conversions

on

each

operand

are

performed.

The

result

has

the

same

type

as

the

converted

operands

and

is

not

an

lvalue.

Because

the

bitwise

inclusive

OR

operator

has

both

associative

and

commutative

properties,

the

compiler

can

rearrange

the

operands

in

an

expression

that

contains

more

than

one

bitwise

inclusive

OR

operator.

Note

that

the

|

character

can

be

represented

by

the

trigraph

??!.

The

following

example

shows

the

values

of

a,

b,

and

the

result

of

a

|

b

represented

as

16-bit

binary

numbers:

bit

pattern

of

a

0000000001011100

bit

pattern

of

b

0000000000101110

bit

pattern

of

a

|

b

0000000001111110

Note:

The

bitwise

OR

(|)

should

not

be

confused

with

the

logical

OR

(||)

operator.

For

example,

1

|

4

evaluates

to

5

while

1

||

4

evaluates

to

true

Related

References

v

“Trigraph

Sequences”

on

page

11

v

“Logical

OR

||”

on

page

108

Logical

AND

&&

The

&&

(logical

AND)

operator

indicates

whether

both

operands

are

true.

If

both

operands

have

nonzero

values,

the

result

has

the

value

1.

Otherwise,

the

result

has

the

value

0.

The

type

of

the

result

is

int.

Both

operands

must

have

a

arithmetic

or

pointer

type.

The

usual

arithmetic

conversions

on

each

operand

are

performed.

Unlike

the

&

(bitwise

AND)

operator,

the

&&

operator

guarantees

left-to-right

evaluation

of

the

operands.

If

the

left

operand

evaluates

to

0

(or

false),

the

right

operand

is

not

evaluated.

Binary

Expressions

Chapter

5.

Expressions

and

Operators

107

The

following

examples

show

how

the

expressions

that

contain

the

logical

AND

operator

are

evaluated:

Expression

Result

1

&&

0

false

or

0

1

&&

4

true

or

1

0

&&

0

false

or

0

The

following

example

uses

the

logical

AND

operator

to

avoid

division

by

zero:

(y

!=

0)

&&

(x

/

y)

The

expression

x

/

y

is

not

evaluated

when

y

!=

0

evaluates

to

0

(or

false).

Note:

The

logical

AND

(&&)

should

not

be

confused

with

the

bitwise

AND

(&)

operator.

For

example:

1

&&

4

evaluates

to

1

(or

true)

while

1

&

4

evaluates

to

0

Related

References

v

“Bitwise

AND

&”

on

page

106

Logical

OR

||

The

||

(logical

OR)

operator

indicates

whether

either

operand

is

true.

If

either

of

the

operands

has

a

nonzero

value,

the

result

has

the

value

1.

Otherwise,

the

result

has

the

value

0.

The

type

of

the

result

is

int.

Both

operands

must

have

a

arithmetic

or

pointer

type.

The

usual

arithmetic

conversions

on

each

operand

are

performed.

Unlike

the

|

(bitwise

inclusive

OR)

operator,

the

||

operator

guarantees

left-to-right

evaluation

of

the

operands.

If

the

left

operand

has

a

nonzero

(or

true)

value,

the

right

operand

is

not

evaluated.

The

following

examples

show

how

expressions

that

contain

the

logical

OR

operator

are

evaluated:

Expression

Result

1

||

0

true

or

1

1

||

4

true

or

1

0

||

0

false

or

0

The

following

example

uses

the

logical

OR

operator

to

conditionally

increment

y:

++x

||

++y;

The

expression

++y

is

not

evaluated

when

the

expression

++x

evaluates

to

a

nonzero

(or

true)

quantity.

Note:

The

logical

OR

(||)

should

not

be

confused

with

the

bitwise

OR

(|)

operator.

For

example:

Binary

Expressions

108

C

Language

Reference

1

||

4

evaluates

to

1

(or

true)

while

1

|

4

evaluates

to

5

Related

References

v

“Bitwise

Inclusive

OR

|”

on

page

107

Conditional

Expressions

A

conditional

expression

is

a

compound

expression

that

contains

a

condition

(operand1),

an

expression

to

be

evaluated

if

the

condition

evaluates

to

true

(operand2),

and

an

expression

to

be

evaluated

if

the

condition

has

the

value

false

(operand3).

The

conditional

expression

contains

one

two-part

operator.

The

?

symbol

follows

the

condition,

and

the

:

symbol

appears

between

the

two

action

expressions.

All

expressions

that

occur

between

the

?

and

:

are

treated

as

one

expression.

The

first

operand

must

have

a

scalar

type.

The

type

of

the

second

and

third

operands

must

be

one

of

the

following:

v

An

arithmetic

type

v

A

compatible

pointer,

structure,

or

union

type

v

void

The

second

and

third

operands

can

also

be

a

pointer

or

a

null

pointer

constant.

Two

objects

are

compatible

when

they

have

the

same

type

but

not

necessarily

the

same

type

qualifiers

(volatile

or

const).

Pointer

objects

are

compatible

if

they

have

the

same

type

or

are

pointers

to

void.

The

first

operand

is

evaluated,

and

its

value

determines

whether

the

second

or

third

operand

is

evaluated:

v

If

the

value

is

true,

the

second

operand

is

evaluated.

v

If

the

value

is

false,

the

third

operand

is

evaluated.

The

result

is

the

value

of

the

second

or

third

operand.

If

the

second

and

third

expressions

evaluate

to

arithmetic

types,

the

usual

arithmetic

conversions

are

performed

on

the

values.

The

types

of

the

second

and

third

operands

determine

the

type

of

the

result

as

shown

in

the

following

tables.

Conditional

expressions

have

right-to-left

associativity

with

respect

to

their

first

and

third

operands.

The

leftmost

operand

is

evaluated

first,

and

then

only

one

of

the

remaining

two

operands

is

evaluated.

The

following

expressions

are

equivalent:

a

?

b

:

c

?

d

:

e

?

f

:

g

a

?

b

:

(c

?

d

:

(e

?

f

:

g))

Type

of

Conditional

C

Expressions

In

C,

a

conditional

expression

is

not

an

lvalue,

nor

is

its

result.

Type

of

One

Operand

Type

of

Other

Operand

Type

of

Result

Arithmetic

Arithmetic

Arithmetic

type

after

usual

arithmetic

conversions

Binary

Expressions

Chapter

5.

Expressions

and

Operators

109

Type

of

One

Operand

Type

of

Other

Operand

Type

of

Result

Structure

or

union

type

Compatible

structure

or

union

type

Structure

or

union

type

with

all

the

qualifiers

on

both

operands

void

void

void

Pointer

to

compatible

type

Pointer

to

compatible

type

Pointer

to

type

with

all

the

qualifiers

specified

for

the

type

Pointer

to

type

NULL

pointer

(the

constant

0)

Pointer

to

type

Pointer

to

object

or

incomplete

type

Pointer

to

void

Pointer

to

void

with

all

the

qualifiers

specified

for

the

type

In

GNU

C,

a

conditional

expression

is

a

valid

lvalue,

provided

that

its

type

is

not

void

and

both

of

its

branches

are

valid

lvalues.

The

following

conditional

expression

(a

?

b

:

c)

is

legal

under

GNU

C:

(a

?

b

:

c)

=

5

/*

Under

GNU

C,

equivalent

to

(a

?

b

=

5

:

(c

=

5))

*/

This

extension

is

available

when

compiling

in

one

of

the

extended

language

levels.

Examples

of

Conditional

Expressions

The

following

expression

determines

which

variable

has

the

greater

value,

y

or

z,

and

assigns

the

greater

value

to

the

variable

x:

x

=

(y

>

z)

?

y

:

z;

The

following

is

an

equivalent

statement:

if

(y

>

z)

x

=

y;

else

x

=

z;

The

following

expression

calls

the

function

printf,

which

receives

the

value

of

the

variable

c,

if

c

evaluates

to

a

digit.

Otherwise,

printf

receives

the

character

constant

’x’.

printf("

c

=

%c\n",

isdigit(c)

?

c

:

’x’);

If

the

last

operand

of

a

conditional

expression

contains

an

assignment

operator,

use

parentheses

to

ensure

the

expression

evaluates

properly.

For

example,

the

=

operator

has

higher

precedence

than

the

?:

operator

in

the

following

expression:

int

i,j,k;

(i

==

7)

?

j

++

:

k

=

j;

The

compiler

will

interpret

this

expression

as

if

it

were

parenthesized

this

way:

int

i,j,k;

((i

==

7)

?

j

++

:

k)

=

j;

That

is,

k

is

treated

as

the

third

operand,

not

the

entire

assignment

expression

k

=

j.

To

assign

the

value

of

j

to

k

when

i

==

7

is

false,

enclose

the

last

operand

in

parentheses:

Conditional

Expressions

110

C

Language

Reference

int

i,j,k;

(i

==

7)

?

j

++

:

(k

=

j);

Assignment

Expressions

An

assignment

expression

stores

a

value

in

the

object

designated

by

the

left

operand.

There

are

two

types

of

assignment

operators:

simple

assignment

and

compound

assignment.

The

left

operand

in

all

assignment

expressions

must

be

a

modifiable

lvalue.

The

type

of

the

expression

is

the

type

of

the

left

operand.

The

value

of

the

expression

is

the

value

of

the

left

operand

after

the

assignment

has

completed.

All

assignment

operators

have

the

same

precedence

and

have

right-to-left

associativity.

Simple

Assignment

=

The

simple

assignment

operator

has

the

following

form:

lvalue

=

expr

The

operator

stores

the

value

of

the

right

operand

expr

in

the

object

designated

by

the

left

operand

lvalue.

The

left

operand

must

be

a

modifiable

lvalue.

The

type

of

an

assignment

operation

is

the

type

of

the

left

operand.

If

the

left

operand

is

not

a

class

type,

the

right

operand

is

implicitly

converted

to

the

type

of

the

left

operand.

This

converted

type

will

not

be

qualified

by

const

or

volatile.

If

the

left

operand

is

a

class

type,

that

type

must

be

complete.

The

copy

assignment

operator

of

the

left

operand

will

be

called.

If

the

left

operand

is

an

object

of

reference

type,

the

compiler

will

assign

the

value

of

the

right

operand

to

the

object

denoted

by

the

reference.

Related

References

v

“Lvalues

and

Rvalues”

on

page

86

v

“Pointers”

on

page

69

v

“Type

Qualifiers”

on

page

61

Compound

Assignment

The

compound

assignment

operators

consist

of

a

binary

operator

and

the

simple

assignment

operator.

They

perform

the

operation

of

the

binary

operator

on

both

operands

and

store

the

result

of

that

operation

into

the

left

operand,

which

must

be

a

modifiable

lvalue.

The

following

table

shows

the

operand

types

of

compound

assignment

expressions:

Operator

Left

Operand

Right

Operand

+=

or

-=

Arithmetic

Arithmetic

+=

or

-=

Pointer

Integral

type

Conditional

Expressions

Chapter

5.

Expressions

and

Operators

111

Operator

Left

Operand

Right

Operand

*=,

/=,

and

%=

Arithmetic

Arithmetic

<<=,

>>=,

&=,

^=,

and

|=

Integral

type

Integral

type

Note

that

the

expression

a

*=

b

+

c

is

equivalent

to

a

=

a

*

(b

+

c)

and

not

a

=

a

*

b

+

c

The

following

table

lists

the

compound

assignment

operators

and

shows

an

expression

using

each

operator:

Operator

Example

Equivalent

Expression

+=

index

+=

2

index

=

index

+

2

-=

*(pointer++)

-=

1

*pointer

=

*(pointer++)

-

1

*=

bonus

*=

increase

bonus

=

bonus

*

increase

/=

time

/=

hours

time

=

time

/

hours

%=

allowance

%=

1000

allowance

=

allowance

%

1000

<<=

result

<<=

num

result

=

result

<<

num

>>=

form

>>=

1

form

=

form

>>

1

&=

mask

&=

2

mask

=

mask

&

2

^=

test

^=

pre_test

test

=

test

^

pre_test

|=

flag

|=

ON

flag

=

flag

|

ON

Although

the

equivalent

expression

column

shows

the

left

operands

(from

the

example

column)

twice,

it

is

in

effect

evaluated

only

once.

When

GNU

C

language

features

have

been

enabled,

compound

expressions

and

conditional

expressions

are

allowed

as

lvalues,

provided

that

their

operands

are

lvalues.

The

following

compound

assignment

of

the

compound

expression

(a,

b)

is

legal

under

GNU

C,

provided

that

expression

b,

or

more

generally,

the

last

expression

in

the

sequence,

is

an

lvalue:

(a,b)

+=

5

/*

Under

GNU

C,

this

is

equivalent

to

a,

(b

+=

5)

*/

Comma

Expressions

A

comma

expression

contains

two

operands

of

any

type

separated

by

a

comma

and

has

left-to-right

associativity.

The

left

operand

is

fully

evaluated,

possibly

producing

side

effects,

and

its

value,

if

there

is

one,

is

discarded.

The

right

operand

is

then

evaluated.

The

type

and

value

of

the

result

of

a

comma

expression

are

those

of

its

right

operand,

after

the

usual

unary

conversions.

In

C,

the

result

of

a

comma

expression

is

not

an

lvalue.

The

following

statements

are

equivalent:

r

=

(a,b,...,c);

a;

b;

r

=

c;

The

difference

is

that

the

comma

operator

may

be

suitable

for

expression

contexts,

such

as

loop

control

expressions.

Assignment

Expressions

112

C

Language

Reference

Similarly,

the

address

of

a

compound

expression

can

be

taken

if

the

right

operand

is

an

lvalue.

&(a,

b)

a,

&b

Any

number

of

expressions

separated

by

commas

can

form

a

single

expression

because

the

comma

operator

is

associative.

The

use

of

the

comma

operator

guarantees

that

the

subexpressions

will

be

evaluated

in

left-to-right

order,

and

the

value

of

the

last

becomes

the

value

of

the

entire

expression.

In

the

following

example,

if

omega

has

the

value

11,

the

expression

increments

delta

and

assigns

the

value

3

to

alpha:

alpha

=

(delta++,

omega

%

4);

A

sequence

point

occurs

after

the

evaluation

of

the

first

operand.

The

value

of

delta

is

discarded.

For

example,

the

value

of

the

expression:

intensity++,

shade

*

increment,

rotate(direction);

is

the

value

of

the

expression:

rotate(direction)

The

primary

use

of

the

comma

operator

is

to

produce

side

effects

in

the

following

situations:

v

Calling

a

function

v

Entering

or

repeating

an

iteration

loop

v

Testing

a

condition

v

Other

situations

where

a

side

effect

is

required

but

the

result

of

the

expression

is

not

immediately

needed

In

some

contexts

where

the

comma

character

is

used,

parentheses

are

required

to

avoid

ambiguity.

For

example,

the

function

f(a,

(t

=

3,

t

+

2),

c);

has

only

three

arguments:

the

value

of

a,

the

value

5,

and

the

value

of

c.

Other

contexts

in

which

parentheses

are

required

are

in

field-length

expressions

in

structure

and

union

declarator

lists,

enumeration

value

expressions

in

enumeration

declarator

lists,

and

initialization

expressions

in

declarations

and

initializers.

In

the

previous

example,

the

comma

is

used

to

separate

the

argument

expressions

in

a

function

invocation.

In

this

context,

its

use

does

not

guarantee

the

order

of

evaluation

(left

to

right)

of

the

function

arguments.

The

following

table

gives

some

examples

of

the

uses

of

the

comma

operator:

Statement

Effects

for

(i=0;

i<2;

++i,

f()

);

A

for

statement

in

which

i

is

incremented

and

f()

is

called

at

each

iteration.

Comma

Expression

Chapter

5.

Expressions

and

Operators

113

Statement

Effects

if

(

f(),

++i,

i>1

)

{

/*

...

*/

}

An

if

statement

in

which

function

f()

is

called,

variable

i

is

incremented,

and

variable

i

is

tested

against

a

value.

The

first

two

expressions

within

this

comma

expression

are

evaluated

before

the

expression

i>1.

Regardless

of

the

results

of

the

first

two

expressions,

the

third

is

evaluated

and

its

result

determines

whether

the

if

statement

is

processed.

func(

(

++a,

f(a)

)

);

A

function

call

to

func()

in

which

a

is

incremented,

the

resulting

value

is

passed

to

a

function

f(),

and

the

return

value

of

f()

is

passed

to

func().

The

function

func()

is

passed

only

a

single

argument,

because

the

comma

expression

is

enclosed

in

parentheses

within

the

function

argument

list.

Comma

Expression

114

C

Language

Reference

Chapter

6.

Implicit

Type

Conversions

An

expression

e

of

a

given

type

is

implicitly

converted

if

used

in

one

of

the

following

situations:

v

Expression

e

is

used

as

an

operand

of

an

arithmetic

or

logical

operation.

v

Expression

e

is

used

as

a

condition

in

an

if

statement

or

an

iteration

statement

(such

as

a

for

loop).

Expression

e

will

be

converted

to

bool

(or

int

in

C).

v

Expression

e

is

used

in

a

switch

statement.

Expression

e

will

be

converted

to

an

integral

type.

v

Expression

e

is

used

in

an

initialization.

This

includes

the

following:

–

An

assignment

is

made

to

an

lvalue

that

has

a

different

type

than

e.

–

A

function

is

provided

an

argument

value

of

e

that

has

a

different

type

than

the

parameter.

–

Expression

e

is

specified

in

the

return

statement

of

a

function,

and

e

has

a

different

type

from

the

defined

return

type

for

the

function.

The

compiler

will

allow

an

implicit

conversion

of

an

expression

e

to

a

type

T

if

and

only

if

the

compiler

would

allow

the

following

statement:

T

var

=

e;

For

example

when

you

add

values

having

different

data

types,

both

values

are

first

converted

to

the

same

type:

when

a

short

int

value

and

an

int

value

are

added

together,

the

short

int

value

is

converted

to

the

int

type.

You

can

perform

explicit

type

conversions

using

one

of

the

cast

operators,

the

function

style

cast,

or

the

C-style

cast.

Integral

and

Floating-Point

Promotions

An

integral

promotion

is

the

conversion

of

one

integral

type

to

another

where

the

second

type

can

hold

all

possible

values

of

the

first

type.

Certain

fundamental

types

can

be

used

wherever

an

integer

can

be

used.

The

following

fundamental

types

can

be

converted

through

integral

promotion

are:

v

char

v

wchar_t

v

short

int

v

enumerators

v

objects

of

enumeration

type

v

integer

bit

fields

(both

signed

and

unsigned)

Except

for

wchar_t,

if

the

value

cannot

be

represented

by

an

int,

the

value

is

converted

to

an

unsigned

int.

For

wchar_t,

if

an

int

can

represent

all

the

values

of

the

original

type,

the

value

is

converted

to

the

type

that

can

best

represent

all

the

values

of

the

original

type.

For

example,

if

a

long

can

represent

all

the

values,

the

value

is

converted

to

a

long.

Floating-Point

Promotions

You

can

convert

an

rvalue

of

type

float

to

an

rvalue

of

type

double.

The

value

of

the

expression

is

unchanged.

This

conversion

is

a

floating-point

promotion.

©

Copyright

IBM

Corp.

1998,

2004

115

Standard

Type

Conversions

Many

C

operators

cause

implicit

type

conversions,

which

change

the

type

of

an

expression.

When

you

add

values

having

different

data

types,

both

values

are

first

converted

to

the

same

type.

For

example,

when

a

short

int

value

and

an

int

value

are

added

together,

the

short

int

value

is

converted

to

the

int

type.

It

can

result

in

loss

of

data

if

the

value

of

the

original

object

is

outside

the

range

representable

by

the

shorter

type.

Implicit

type

conversions

can

occur

when:

v

An

operand

is

prepared

for

an

arithmetic

or

logical

operation.

v

An

assignment

is

made

to

an

lvalue

that

has

a

different

type

than

the

assigned

value.

v

A

function

is

provided

an

argument

value

that

has

a

different

type

than

the

parameter.

v

The

value

specified

in

the

return

statement

of

a

function

has

a

different

type

from

the

defined

return

type

for

the

function.

Lvalue-to-Rvalue

Conversions

If

an

lvalue

appears

in

a

situation

in

which

the

compiler

expects

an

rvalue,

the

compiler

converts

the

lvalue

to

an

rvalue.

An

lvalue

e

of

a

type

T

can

be

converted

to

an

rvalue

if

T

is

not

a

function

or

array

type.

The

type

of

e

after

conversion

will

be

T.

The

following

table

lists

exceptions

to

this:

Situation

before

conversion

Resulting

behavior

T

is

an

incomplete

type

compile-time

error

e

refers

to

an

uninitialized

object

undefined

behavior

e

refers

to

an

object

not

of

type

T

undefined

behavior

Related

References

v

“Lvalues

and

Rvalues”

on

page

86

Boolean

Conversions

The

conversion

of

any

scalar

value

to

type

_Bool

has

a

result

of

0

if

the

value

compares

equal

to

0;

otherwise

the

result

is

1.

The

following

is

an

example

of

boolean

conversions:

void

f(int*

a,

int

b)

{

bool

d

=

a;

//

false

if

a

==

NULL

bool

e

=

b;

//

false

if

b

==

0

}

The

variable

d

will

be

false

if

a

is

equal

to

a

null

pointer.

Otherwise,

d

will

be

true.

The

variable

e

will

be

false

if

b

is

equal

to

zero.

Otherwise,

e

will

be

true.

Related

References

v

“Boolean

Variables”

on

page

41

Integral

Conversions

You

can

convert

the

following:

Standard

Type

Conversions

116

C

Language

Reference

v

An

rvalue

of

integer

type

(including

signed

and

unsigned

integer

types)

to

another

rvalue

of

integer

type

v

An

rvalue

of

enumeration

type

to

an

rvalue

of

integer

type

If

you

are

converting

an

integer

a

to

an

unsigned

type,

the

resulting

value

x

is

the

least

unsigned

integer

such

that

a

and

x

are

congruent

modulo

2^n,

where

n

is

the

number

of

bits

used

to

represent

an

unsigned

type.

If

two

numbers

a

and

x

are

congruent

modulo

2^n,

the

following

expression

is

true,

where

the

function

pow(m,

n)

returns

the

value

of

m

to

the

power

of

n:

a

%

pow(2,

n)

==

x

%

pow(2,

n)

If

you

are

converting

an

integer

a

to

a

signed

type,

the

compiler

does

not

change

the

resulting

value

if

the

new

type

is

large

enough

to

hold

a.

If

the

new

type

is

not

large

enough,

the

behavior

is

defined

by

the

compiler.

Integer

promotions

belong

to

a

different

category

of

conversions;

they

are

not

integral

conversions.

Related

References

v

“Integer

Variables”

on

page

43

Floating-Point

Conversions

You

can

convert

an

rvalue

of

floating-point

type

to

another

rvalue

of

floating-point

type.

Floating-point

promotions

(converting

from

float

to

double)

belong

to

a

different

category

of

conversions;

they

are

not

floating-point

conversions.

Related

References

v

“Floating-Point

Variables”

on

page

42

v

“Integral

and

Floating-Point

Promotions”

on

page

115

Pointer

Conversions

Pointer

conversions

are

performed

when

pointers

are

used,

including

pointer

assignment,

initialization,

and

comparison.

Conversions

that

involve

pointers

must

use

an

explicit

type

cast.

The

exceptions

to

this

rule

are

the

allowable

assignment

conversions

for

C

pointers.

In

the

following

table,

a

const-qualified

lvalue

cannot

be

used

as

a

left

operand

of

the

assignment.

Table

1.

Legal

assignment

conversions

for

C

pointers

Left

operand

type

Permitted

right

operand

types

pointer

to

(object)

T

the

constant

0

a

pointer

to

a

type

compatible

with

T

a

pointer

to

void

(void*)

pointer

to

(function)

F

the

constant

0

a

pointer

to

a

function

compatible

with

F

The

referenced

type

of

the

left

operand

must

have

the

same

qualifiers

as

the

right

operand.

An

object

pointer

may

be

an

incomplete

type

if

the

other

pointer

has

type

void*.

Standard

Type

Conversions

Chapter

6.

Implicit

Type

Conversions

117

C

pointers

are

not

necessarily

the

same

size

as

type

int.

Pointer

arguments

given

to

functions

should

be

explicitly

cast

to

ensure

that

the

correct

type

expected

by

the

function

is

being

passed.

The

generic

object

pointer

in

C

is

void*,

but

there

is

no

generic

function

pointer.

Conversion

to

void*

Any

pointer

to

an

object

of

a

type

T,

optionally

type-qualified,

can

be

converted

to

void*,

keeping

the

same

const

or

volatile

qualifications.

The

allowable

assignment

conversions

involving

void*

as

the

left

operand

are

shown

in

the

following

table.

Table

2.

Legal

assignment

conversions

in

C

for

void*

Left

operand

type

Permitted

right

operand

types

(void*)

the

constant

0

a

pointer

to

(object)

T

(void*)

The

object

T

may

be

an

incomplete

type.

Null

Pointer

Constants

A

constant

expression

that

evaluates

to

zero

is

a

null

pointer

constant.

This

expression

can

be

converted

to

a

pointer.

This

pointer

will

be

a

null

pointer

(pointer

with

a

zero

value),

and

is

guaranteed

not

to

point

to

any

object.

Array-to-Pointer

Conversions

You

can

convert

an

lvalue

or

rvalue

with

type

″array

of

N,″

where

N

is

the

type

of

a

single

element

of

the

array,

to

N*.

The

result

is

a

pointer

to

the

initial

element

of

the

array.

You

cannot

perform

the

conversion

if

the

expression

is

used

as

the

operand

of

the

&

(address)

operator

or

the

sizeof

operator.

Function-to-Pointer

Conversions

You

can

convert

an

lvalue

that

is

a

function

of

type

T

to

an

rvalue

that

is

a

pointer

to

a

function

of

type

T,

except

when

the

expression

is

used

as

the

operand

of

the

&

(address)

operator,

the

()

(function

call)

operator,

or

the

sizeof

operator.

Function

Argument

Conversions

If

a

function

declaration

is

present

and

includes

declared

argument

types,

the

compiler

performs

type

checking.

If

no

function

declaration

is

visible

when

a

function

is

called,

or

when

an

expression

appears

as

an

argument

in

the

variable

part

of

a

prototype

argument

list,

the

compiler

performs

default

argument

promotions

or

converts

the

value

of

the

expression

before

passing

any

arguments

to

the

function.

The

automatic

conversions

consist

of

the

following:

v

Integral

promotions

v

Arguments

with

type

float

are

converted

to

type

double.

When

compiled

using

a

compiler

option

that

allows

the

GNU

C

semantics,

a

function

prototype

may

override

a

later

K&R

nonprototype

definition.

This

behavior

is

illegal

in

ISO

C.

Under

ISO

C,

the

type

of

function

arguments

after

automatic

conversion

must

match

that

of

the

function

prototype.

Standard

Type

Conversions

118

C

Language

Reference

int

func(char);

/*

Legal

in

GCC,

illegal

in

ISO

C

*/

int

func(ch)

/*

ch

is

automatically

promoted

to

int,

*/

char

ch;

/*

which

does

not

match

the

prototype

argument

type

char

*/

{

return

ch

==

0;}

int

func(float);

/*

Legal

in

GCC,

illegal

in

ISO

C

*/

int

func(ch)

/*

ch

is

automatically

promoted

to

double,

*/

float

ch;

/*

which

does

not

match

the

prototype

argument

type

float

*/

{

return

ch

==

0;}

Related

References

v

“Integral

and

Floating-Point

Promotions”

on

page

115

v

“Function

Declarations”

on

page

121

Other

Conversions

The

void

type

By

definition,

the

void

type

has

no

value.

Therefore,

it

cannot

be

converted

to

any

other

type,

and

no

other

value

can

be

converted

to

void

by

assignment.

However,

a

value

can

be

explicitly

cast

to

void.

Structure

or

union

types

No

conversions

between

structure

or

union

types

are

allowed,

except

for

the

following.

In

C,

an

assignment

conversion

between

compatible

structure

or

union

types

is

allowed

if

the

right

operand

is

of

a

type

compatible

with

that

of

the

left

operand.

Table

3.

Legal

assignment

conversions

in

C

for

structure

or

union

types

Left

operand

type

Permitted

right

operand

types

a

structure

or

union

type

a

compatible

structure

or

union

type

Enumeration

types

In

C,

when

you

define

a

value

using

the

enum

type

specifier,

the

value

is

treated

as

an

int.

Conversions

to

and

from

an

enum

value

proceed

as

for

the

int

type.

You

can

convert

from

an

enum

to

any

integral

type

but

not

from

an

integral

type

to

an

enum.

Related

References

v

“void

Type”

on

page

44

v

“Enumerations”

on

page

57

Arithmetic

Conversions

The

conversions

depend

on

the

specific

operator

and

the

type

of

the

operand

or

operands.

However,

many

operators

perform

similar

conversions

on

operands

of

integer

and

floating-point

types.

These

standard

conversions

are

known

as

the

arithmetic

conversions

because

they

apply

to

the

types

of

values

ordinarily

used

in

arithmetic.

Arithmetic

conversions

are

used

for

matching

operands

of

arithmetic

operators.

Standard

Type

Conversions

Chapter

6.

Implicit

Type

Conversions

119

Arithmetic

conversion

proceeds

in

the

following

order:

Operand

Type

Conversion

One

operand

has

long

double

type

The

other

operand

is

converted

to

long

double.

One

operand

has

double

type

The

other

operand

is

converted

to

double.

One

operand

has

float

type

The

other

operand

is

converted

to

float.

One

operand

has

unsigned

long

long

int

type

The

other

operand

is

converted

to

unsigned

long

long

int

One

operand

has

long

long

type.

The

other

operand

is

converted

to

long

long.

One

operand

has

unsigned

long

int

type

The

other

operand

is

converted

to

unsigned

long

int.

One

operand

has

unsigned

int

type

and

the

other

operand

has

long

int

type

and

the

value

of

the

unsigned

int

can

be

represented

in

a

long

int

The

operand

with

unsigned

int

type

is

converted

to

long

int.

One

operand

has

unsigned

int

type

and

the

other

operand

has

long

int

type

and

the

value

of

the

unsigned

int

cannot

be

represented

in

a

long

int

Both

operands

are

converted

to

unsigned

long

int.

One

operand

has

long

int

type

The

other

operand

is

converted

to

long

int.

One

operand

has

unsigned

int

type

The

other

operand

is

converted

to

unsigned

int.

Both

operands

have

int

type

The

result

is

type

int.

Related

References

v

Chapter

5,

“Expressions

and

Operators,”

on

page

83

v

“Integer

Variables”

on

page

43

v

“Floating-Point

Variables”

on

page

42

Arithmetic

Conversions

120

C

Language

Reference

Chapter

7.

Functions

In

the

context

of

programming

languages,

the

term

function

means

an

assemblage

of

statements

used

for

computing

an

output

value.

The

word

is

used

less

strictly

than

in

mathematics,

where

it

means

a

set

relating

input

variables

uniquely

to

output

variables.

Functions

in

C

programs

may

not

produce

consistent

outputs

for

all

inputs,

may

not

produce

output

at

all,

or

may

have

side

effects.

Functions

can

be

understood

as

user-defined

operations,

in

which

the

parameters

of

the

parameter

list,

if

any,

are

the

operands.

Functions

fall

into

two

categories:

those

written

by

you

and

those

provided

with

the

C

language

implementation.

The

latter

are

called

library

functions,

since

they

belong

to

the

library

of

functions

supplied

with

the

compiler.

The

result

of

a

function

is

called

its

return

value.

The

data

type

of

the

return

value

is

called

the

return

type.

A

function

identifier

preceded

by

its

return

type

and

followed

by

its

parameter

list

is

called

a

function

declaration

or

function

prototype.

The

term

function

body

refers

to

the

statements

that

represent

the

actions

that

the

function

performs.

The

body

of

a

function

is

enclosed

in

braces,

which

creates

what

is

called

a

function

block.

The

function

return

type,

followed

by

its

name,

parameter

list,

and

body

constitute

the

function

definition.

The

function

name

followed

by

the

function

call

operator,

(),

causes

evaluation

of

the

function.

If

the

function

has

been

defined

to

receive

parameters,

the

values

that

are

to

be

sent

into

the

function

are

listed

inside

the

parentheses

of

the

function

call

operator.

These

values

are

the

arguments

for

the

parameters,

and

the

process

just

described

is

called

passing

arguments

to

the

function.

Function

Declarations

A

function

declaration

establishes

the

name

of

the

function

and

the

number

and

types

of

its

parameters.

A

function

declaration

consists

of

a

return

type,

a

name,

and

a

parameter

list.

In

addition,

a

function

declaration

may

optionally

specify

the

function’s

linkage.

A

declaration

informs

the

compiler

of

the

format

and

existence

of

a

function

prior

to

its

use.

A

function

can

be

declared

several

times

in

a

program,

provided

that

all

the

declarations

agree.

Implicit

declaration

of

functions

is

not

allowed:

every

function

must

be

explicitly

declared

before

it

can

be

called.

In

C89,

if

a

function

is

called

without

an

explicit

prototype,

the

compiler

provides

an

implicit

declaration.

The

compiler

checks

for

mismatches

between

the

parameters

of

a

function

call

and

those

in

the

function

declaration.

The

compiler

also

uses

the

declaration

for

argument

type

checking

and

argument

conversions.

A

function

definition

contains

a

function

declaration

and

the

body

of

the

function.

A

function

can

only

have

one

definition.

Declarations

are

typically

placed

in

header

files,

while

function

definitions

appear

in

source

files.

©

Copyright

IBM

Corp.

1998,

2004

121

��

extern

static

type_specifier

function_name

�

�

�

,

(

)

parameter

,

...

const

volatile

�

�

exception_specification

;

��

A

function

argument

is

an

expression

that

you

use

within

the

parentheses

of

a

function

call.

A

function

parameter

is

an

object

or

reference

declared

within

the

parenthesis

of

a

function

declaration

or

definition.

When

you

call

a

function,

the

arguments

are

evaluated,

and

each

parameter

is

initialized

with

the

value

of

the

corresponding

argument.

The

semantics

of

argument

passing

are

identical

to

those

of

assignment.

Some

declarations

do

not

name

the

parameters

within

the

parameter

lists;

the

declarations

simply

specify

the

types

of

parameters

and

the

return

values.

This

is

called

prototyping

A

function

prototype

consists

of

the

function

return

type,

the

name

of

the

function,

and

the

parameter

list.

The

following

example

demonstrates

this:

int

func(int,long);

Function

Return

Type

You

can

define

a

function

to

return

any

type

of

value,

except

an

array

type

or

a

function

type.

These

exclusions

must

be

handled

by

returning

a

pointer

to

the

array

or

function.

A

function

may

return

a

pointer

to

function,

or

a

pointer

to

the

first

element

of

an

array,

but

it

may

not

return

a

value

that

has

a

type

of

array

or

function.

To

indicate

that

the

function

does

not

return

a

value,

declare

it

with

a

return

type

of

void.

The

return

type

of

a

function

must

be

void

if

the

return

statement

does

not

contain

an

expression.

However,

if

an

expression

does

appear

in

the

return

statement,

then

the

return

type

of

the

function

cannot

be

void:

the

compiler

converts

the

return

expression

as

if

by

assignment

to

the

return

type

of

the

function.

A

function

cannot

be

declared

as

returning

a

data

object

having

a

volatile

or

const

type,

but

it

can

return

a

pointer

to

a

volatile

or

const

object.

Limitations

When

Declaring

a

Function

In

C,

you

cannot

have

an

ellipsis

as

the

only

argument.

Types

cannot

be

defined

in

return

or

argument

types.

The

C

compiler

allows

the

following

declaration:

struct

X

{

int

i;

};

void

print(struct

X

x);

Function

Declarations

122

C

Language

Reference

The

C

compiler

will

not

allow

the

following

declaration

of

the

same

function:

void

print(struct

X

{

int

i;

}

x);

//error

This

example

attempts

to

declare

a

function

print()

that

takes

an

object

x

of

class

X

as

its

argument.

However,

the

class

definition

is

not

allowed

within

the

argument

list.

Related

References

v

“Type

Qualifiers”

on

page

61

Function

Attributes

Function

attributes

are

orthogonal

extensions,

implemented

to

enhance

the

portability

of

programs

developed

with

GNU

C.

Specifiable

attributes

for

functions

provide

explicit

ways

to

help

the

compiler

optimize

function

calls

and

to

instruct

it

to

check

more

aspects

of

the

code.

Others

provide

additional

functionality.

IBM

C

implements

a

subset

of

the

GNU

C

function

attributes.

If

a

particular

function

attribute

is

not

implemented,

its

specification

is

accepted

and

the

semantics

are

ignored.

These

language

features

are

collectively

available

when

compiling

in

any

of

the

extended

language

levels.

The

IBM

language

extensions

for

function

attributes

preserve

the

GNU

C

syntax.

A

function

attribute

specification

using

the

form

__attribute_name__

(that

is,

the

function

attribute

keyword

with

double

underscore

characters

leading

and

trailing)

reduces

the

likelihood

of

a

name

conflict

with

a

macro

of

the

same

name.

The

keyword

__attribute__

introduces

an

attribute

specifier.

Some

of

the

attributes

can

also

be

applied

to

variables.

The

syntax

is

of

the

general

form:

��

�

,

__attribute__

((

))

individual_attribute_name

__individual_attribute_name__

��

Function

attributes

are

attached

to

a

declarator.

For

attributes

specified

on

a

function

prototype

declaration,

attaching

them

to

the

declarator

means

placing

them

after

the

closing

parenthesis

of

the

parameter

list.

/*

Specify

the

attribute

on

a

function

prototype

declaration

*/

void

f(int

i,

int

j)

__attribute__((individual_attribute_name));

void

f(int

i,

int

j)

{

}

Due

to

ambiguities

in

parsing

old-style

parameter

declarations,

a

function

definition

must

have

the

attribute

specification

precede

the

declarator.

For

example,

the

following

definitions

of

foo

show

the

correct

placement:

int

__attribute__((individual_attribute_name))

foo(int

i)

{

}

int

__attribute__((individual_attribute_name))

foo(i,j)

int

i;

int

j;

{

}

Related

References

v

“Variable

Attributes”

on

page

26

v

“Type

Attributes”

on

page

36

Function

Declarations

Chapter

7.

Functions

123

The

alias

Function

Attribute

2000AIX

2000Linux

2000z/OS

The

alias

function

attribute

causes

the

function

declaration

to

appear

in

the

object

file

as

an

alias

for

another

symbol.

This

language

feature

provides

a

technique

for

coping

with

duplicate

or

cumbersome

names.

The

alias

function

attribute

follows

the

general

syntax

for

function

attributes.

The

following

diagram

shows

the

supported

forms.

��

__attribute__

((

alias

(

″original_function_name″

)

))

__alias__

��

The

aliased

function

can

be

defined

after

the

specification

of

its

alias

with

this

function

attribute.

C

also

allows

an

alias

specification

in

the

absence

of

a

definition

of

the

aliased

function

in

the

same

compilation

unit.

The

following

declares

bar

to

be

an

alias

for

__foo:

void

__foo(){

/*

function

body

*/

}

void

bar()

__attribute__((alias("__foo")));

The

compiler

does

not

check

for

consistency

between

the

declaration

of

bar

and

definition

of

__foo.

Such

consistency

remains

the

responsibility

of

the

programmer.

Related

References

v

“The

weak

Function

Attribute”

on

page

127

The

always_inline

Function

Attribute

Function

attribute

always_inline

instructs

the

compiler

to

inline

an

inline

function,

regardless

of

whether

optimization

was

specified

at

compile

time.

However,

the

attribute

has

no

effect

if

the

program

is

compiled

at

no-opt

levels.

Specifying

this

attribute

for

a

function

without

an

inline

specification

also

has

no

effect.

The

attribute

takes

precedence

over

inlining

compiler

options.

The

language

feature

is

an

orthogonal

extension

to

C89,

C99,

Standard

C++

and

C++98,

and

has

been

implemented

to

facilitate

porting

programs

developed

with

GNU

C

and

C++.

The

syntax

is

shown

in

the

following

diagram.

��

__attribute__

((

always_inline

))

__always_inline__

��

The

const

Function

Attribute

The

const

function

attribute

allows

you

to

tell

the

compiler

that

the

function

can

safely

be

called

fewer

times

than

indicated

in

the

source

code.

The

language

feature

provides

the

programmer

with

an

explicit

way

to

help

the

compiler

optimize

code

by

indicating

that

the

function

does

not

examine

any

values

except

its

arguments

and

has

no

effects

except

for

its

return

value.

The

const

function

attribute

follows

the

general

syntax

for

function

attributes.

��

__attribute__

((

const

))

__const__

��

The

following

kinds

of

functions

should

not

be

declared

const:

v

A

function

with

pointer

arguments

which

examines

the

data

pointed

to.

Function

Declarations

124

C

Language

Reference

v

A

function

that

calls

a

non-const

function.

See

also

#pragma

isolated_call

in

XL

C

Compiler

Reference.

The

format

Function

Attribute

Function

attribute

format

provides

a

way

to

identify

user-defined

functions

that

take

format

strings

as

arguments

so

that

calls

to

these

functions

will

be

type-checked

against

a

format

string,

similar

to

the

way

the

compiler

checks

calls

to

the

functions

printf,

scanf,

strftime,

and

strfmon

for

errors.

The

feature

is

an

orthogonal

extension

to

C89,

C99,

Standard

C++

and

C++98,

and

has

been

implemented

to

facilitate

porting

applications

developed

with

GNU

C

and

C++.

The

syntax

is

shown

in

the

following

diagram.

The

first

argument

indicates

the

archetype

for

how

the

format

string

should

be

interpreted.

��

�

,

__attribute__

((

format

(

printf

,

string_index

,

first_to_check

)

))

__format__

scanf

strftime

strfmon

__printf__

__scanf__

__strftime__

__strfmon__

��

where

string_index

Is

a

constant

integral

expression

that

specifies

which

argument

in

the

declaration

of

the

user

function

is

the

format

string

argument.

In

C++,

the

minimum

value

of

string_index

for

nonstatic

member

functions

is

2

because

the

first

argument

is

an

implicit

this

argument.

This

behavior

is

consistent

with

that

of

GNU

C++.

first_to_check

Is

a

constant

integral

expression

that

specifies

the

first

argument

to

check

against

the

format

string.

If

there

are

no

arguments

to

check

against

the

format

string

(that

is,

diagnostics

should

only

be

performed

on

the

format

string

syntax

and

semantics),

first_to_check

should

have

a

value

of

0.

For

strftime-style

formats,

first_to_check

is

required

to

be

0.

It

is

possible

to

specify

multiple

format

attributes

on

the

same

function,

in

which

case,

all

apply.

void

my_fn(const

char*

a,

const

char*

b,

...)

__attribute__((__format__(__printf__,1,0),

__format__(__scanf__,2,3)));

It

is

also

possible

to

diagnose

the

same

string

for

different

format

styles.

All

styles

are

diagnosed.

void

my_fn(const

char*

a,

const

char*

b,

...)

__attribute__((__format__(__printf__,2,3),

__format__(__strftime__,2,0),

__format__(__scanf__,2,3)));

The

format_arg

Function

Attribute

Function

attribute

format_arg

provides

a

way

to

identify

user-defined

functions

that

modify

format

strings.

Once

the

function

is

identified,

calls

to

functions

like

printf,

scanf,

strftime,

or

strfmon,

whose

operands

are

a

call

to

the

user-defined

function

can

be

checked

for

errors.

The

language

feature

is

an

orthogonal

extension

Function

Declarations

Chapter

7.

Functions

125

to

C89,

C99,

and

Standard

C++,

and

has

been

implemented

to

facilitate

porting

programs

developed

with

GNU

C

and

C++.

The

syntax

is

shown

in

the

following

diagram.

��

__attribute__

((

format_arg

(

string_index

)

))

__format_arg__

��

where

string_index

is

a

constant

integral

expression

that

specifies

which

argument

is

the

format

string

argument,

starting

from

1.

For

non-static

member

functions

in

C++,

string_index

starts

from

2

because

the

first

parameter

is

an

implicit

this

parameter.

It

is

possible

to

specify

multiple

format_arg

attributes

on

the

same

function,

in

which

case,

all

apply.

extern

char*

my_dgettext(const

char*

my_format,

const

char*

my_format2)

__attribute__((__format_arg__(1)))

__attribute__((__format_arg__(2)));

printf(my_dgettext("%","%"));

//printf-style

format

diagnostics

are

performed

on

both

"%"

strings

The

noinline

Function

Attribute

Function

attribute

noinline

prevents

the

function

to

which

it

is

applied

from

being

inlined,

regardless

if

the

function

is

declared

inline

or

non-inline.

The

attribute

takes

precedence

over

inlining

compiler

options,

the

inline

keyword,

and

the

always_inline

function

attribute.

The

language

feature

is

an

orthogonal

extension

to

C89,

C99,

Standard

C++

and

C++98,

and

has

been

implemented

to

facilitate

porting

programs

developed

with

GNU

C

and

C++.

The

syntax

is

shown

in

the

following

diagram.

��

__attribute__

((

noinline

))

__noinline__

��

Other

than

preventing

inlining,

the

attribute

does

not

remove

the

semantics

of

inline

functions.

The

noreturn

Function

Attribute

The

noreturn

function

attribute

allows

you

to

indicate

to

the

compiler

that

the

function

is

not

intended

to

return.

The

language

feature

provides

the

programmer

with

another

explicit

way

to

help

the

compiler

optimize

code

and

to

reduce

false

warnings

for

uninitialized

variables.

The

return

type

of

the

function

should

be

void.

The

noreturn

function

attribute

follows

the

general

syntax

for

function

attributes.

��

__attribute__

((

noreturn

))

__noreturn__

��

Registers

saved

by

the

calling

function

may

not

necessarily

be

restored

before

calling

the

nonreturning

function.

See

also

#pragma

leaves

in

XL

C

Compiler

Reference.

Function

Declarations

126

C

Language

Reference

The

pure

Function

Attribute

The

function

attribute

pure

allows

you

to

declare

a

function

that

can

be

called

fewer

times

than

what

is

literally

in

the

source

code.

Declaring

a

function

with

the

attribute

pure

indicates

that

the

function

has

no

effect

except

a

return

value

that

depends

only

on

the

parameters,

global

variables,

or

both.

The

syntax

is

the

same

as

that

for

const.

See

also

#pragma

isolated_call

in

XL

C

Compiler

Reference.

The

weak

Function

Attribute

2000AIX

2000Linux

The

weak

function

attribute

causes

the

symbol

resulting

from

the

function

declaration

to

appear

in

the

object

file

as

a

weak

symbol,

rather

than

a

global

one.

The

weak

attribute

can

also

be

applied

to

variables.

The

language

feature

provides

the

programmer

writing

library

functions

with

a

way

to

preempt

duplicate

name

errors

if

the

user

overrides

the

function

definition

in

his

or

her

code.

The

weak

function

attribute

follows

the

general

syntax

for

function

attributes.

The

following

diagram

shows

the

supported

forms.

��

__attribute__

((

weak

))

__weak__

��

Normally,

when

several

relocatable

object

files

are

processed,

the

linker

disallows

multiple

definitions

of

global

symbols

with

the

same

name.

However,

the

linker

allows

a

weak

definition

in

the

presence

of

a

global

symbol

with

the

same

name;

the

weak

definition

is

ignored.

Another

difference

between

a

global

and

a

weak

symbol

lies

in

whether

the

linker

searches

archive

libraries.

To

resolve

undefined

global

symbols,

the

linker

searches

archive

libraries

and

extracts

members

that

contain

definitions;

it

does

not

do

this

to

resolve

undefined

weak

symbols.

The

following

restrictions

and

limitations

apply

to

weak

symbols:

v

Weak

symbols

may

not

have

static

storage

duration.

v

Multiple

definitions

for

a

weak

symbol

cannot

be

provided

in

the

same

translation

unit.

When

multiple

definitions

are

present,

the

linker

uses

the

first

weak

definition

encountered.

Examples

of

Function

Declarations

The

following

code

fragments

show

several

function

declarations.

The

first

declares

a

function

f

that

takes

two

integer

arguments

and

has

a

return

type

of

void:

void

f(int,

int);

The

following

code

fragment

declares

a

pointer

p1

to

a

function

that

takes

a

pointer

to

a

constant

character

and

returns

an

integer:

int

(*p1)

(const

char*);

The

following

code

fragment

declares

a

function

f1

that

takes

an

integer

argument,

and

returns

a

pointer

to

a

function

that

takes

an

integer

argument

and

returns

an

integer:

int

(*f1(int))

(int);

Alternatively,

a

typedef

can

be

used

for

the

complicated

return

type

of

function

f1:

Function

Declarations

Chapter

7.

Functions

127

typedef

int

f1_return_type(int);

f1_return_type*

f1(int);

Function

Definitions

A

function

definition

contains

a

function

declaration

and

the

body

of

a

function.

The

syntax

for

a

C

function

definition

is

as

follows:

��

�

type_specifier

extern

static

function_name

�

�

�

(

)

,

parameter_declaration

,

...

function_body

��

function_body:

block_statement

A

function

definition

contains

the

following:

v

At

least

one

type

specifier,

which

determines

the

type

of

value

that

the

function

returns.

For

example,

the

syntax

for

a

function

that

returns

an

unsigned

long

int

uses

three

type

specifiers.

v

An

optional

storage

class

specifier

extern

or

static,

which

determines

the

scope

of

the

function.

If

a

storage

class

specifier

is

not

given,

the

function

has

external

linkage.

v

A

function

declarator

is

the

function

name

followed

by

a

parenthesized

list

of

parameter

types

and

names

each

parameter

that

the

function

expects.

In

the

following

function

definition,

f(int

a,

int

b)

is

the

function

declarator:

int

f(int

a,

int

b)

{

return

a

+

b;

}

v

A

block

statement,

which

contains

data

definitions

and

code.

A

function

can

be

called

by

itself

or

by

other

functions.

By

default,

function

definitions

have

external

linkage,

and

can

be

called

by

functions

defined

in

other

files.

A

storage

class

specifier

of

static

means

that

the

function

name

has

global

scope

only,

and

can

be

directly

invoked

only

from

within

the

same

translation

unit.

In

C,

if

a

function

definition

has

external

linkage

and

a

return

type

of

int,

calls

to

the

function

can

be

made

before

it

is

visible

because

an

implicit

declaration

of

extern

int

func();

is

assumed.

To

be

compatible

with

C++,

all

functions

must

be

declared

with

prototypes.

If

the

function

does

not

return

a

value,

use

the

keyword

void

as

the

type

specifier.

If

the

function

does

not

take

any

parameters,

use

the

keyword

void

rather

than

an

Function

Declarations

128

C

Language

Reference

empty

parameter

list

to

indicate

that

the

function

is

not

passed

any

arguments.

In

C,

a

function

with

an

empty

parameter

list

signifies

a

function

that

takes

an

unknown

number

of

parameters;

in

C++,

it

means

it

takes

no

parameters.

In

C,

you

cannot

declare

a

function

as

a

struct

or

union

member.

Compatibility

of

Function

Declarations

All

declarations

for

a

given

function

must

be

compatible;

that

is,

the

return

type

is

the

same

and

the

parameters

have

the

same

type.

Compatibility

of

Function

Types

The

notion

of

type

compatibility

pertains

only

to

C.

For

two

function

types

to

be

compatible,

the

return

types

must

be

compatible.

If

both

function

types

are

specified

without

prototypes,

this

is

the

only

requirement.

For

two

functions

declared

with

prototypes,

the

composite

type

must

meet

the

following

additional

requirements:

v

If

one

of

the

function

types

has

a

parameter

type

list,

the

composite

type

is

a

function

prototype

with

the

same

parameter

type

list.

v

If

both

types

are

function

types

with

parameter

lists,

then

each

parameter

in

the

parameter

list

of

the

composite

is

the

composite

type

of

the

corresponding

parameters.

and

may

use

the

[*]

notation

in

their

sequences

of

declarator

specifiers

to

specify

variable

length

array

types.

If

the

function

declarator

is

not

part

of

the

function

definition,

the

parameters

may

have

incomplete

type.

The

parameters

may

also

specify

variable

length

array

types

by

using

the

[*]

notation

in

their

sequences

of

declarator

specifiers.

The

following

are

examples

of

compatible

function

prototype

declarators:

double

maximum(int

n,

int

m,

double

a[n][m]);

double

maximum(int

n,

int

m,

double

a[*][*]);

double

maximum(int

n,

int

m,

double

a[

][*]);

double

maximum(int

n,

int

m,

double

a[

][m]);

Examples

of

Function

Definitions

The

following

example

is

a

definition

of

the

function

sum:

int

sum(int

x,int

y)

{

return(x

+

y);

}

The

function

sum

has

external

linkage,

returns

an

object

that

has

type

int,

and

has

two

parameters

of

type

int

declared

as

x

and

y.

The

function

body

contains

a

single

statement

that

returns

the

sum

of

x

and

y.

In

the

following

example,

ary

is

an

array

of

two

function

pointers.

Type

casting

is

performed

to

the

values

assigned

to

ary

for

compatibility:

#include

<stdio.h>

typedef

void

(*ARYTYPE)();

int

func1(void);

void

func2(double

a);

Function

Definitions

Chapter

7.

Functions

129

int

main(void)

{

double

num

=

333.3333;

int

retnum;

ARYTYPE

ary[2];

ary[0]=(ARYTYPE)func1;

ary[1]=(ARYTYPE)func2;

retnum=((int

(*)())ary[0])();

/*

calls

func1

*/

printf("number

returned

=

%i\n",

retnum);

((void

(*)(double))ary[1])(num);

/*

calls

func2

*/

return(0);

}

int

func1(void)

{

int

number=3;

return

number;

}

void

func2(double

a)

{

printf("result

of

func2

=

%f\n",

a);

}

The

following

is

the

output

of

the

above

example:

number

returned

=

3

result

of

func2

=

333.333300

Related

References

v

“extern

Storage

Class

Specifier”

on

page

31

v

“static

Storage

Class

Specifier”

on

page

33

v

“Type

Qualifiers”

on

page

61

Ellipsis

and

void

An

ellipsis

at

the

end

of

the

parameter

specifications

is

used

to

specify

that

a

function

has

a

variable

number

of

parameters.

The

number

of

parameters

is

equal

to,

or

greater

than,

the

number

of

parameter

specifications.

At

least

one

parameter

declaration

must

come

before

the

ellipsis.

int

f(int,

...);

The

comma

before

the

ellipsis

as

well

as

a

parameter

declaration

before

the

ellipsis

are

both

required

in

C.

Parameter

promotions

are

performed

as

needed,

but

no

type

checking

is

done

on

the

variable

arguments.

You

can

declare

a

function

with

no

arguments

in

two

ways:

int

f(void);

int

f();

An

empty

argument

declaration

list

means

that

the

function

may

take

any

number

or

type

of

parameters.

The

type

void

cannot

be

used

as

an

argument

type,

although

types

derived

from

void

(such

as

pointers

to

void)

can

be

used.

Function

Definitions

130

C

Language

Reference

In

the

following

example,

the

function

f()

takes

one

integer

argument

and

returns

no

value,

while

g()

expects

no

arguments

and

returns

an

integer.

void

f(int);

int

g(void);

Examples

of

Function

Definitions

The

following

example

contains

a

function

declarator

i_sort

with

table

declared

as

a

pointer

to

int

and

length

declared

as

type

int.

Note

that

arrays

as

parameters

are

implicitly

converted

to

a

pointer

to

the

element

type.

/**

**

This

example

illustrates

function

definitions.

**

Note

that

arrays

as

parameters

are

implicitly

**

converted

to

a

pointer

to

the

type.

**/

#include

<stdio.h>

void

i_sort(int

table[

],

int

length);

int

main(void)

{

int

table[

]={1,5,8,4};

int

length=4;

printf("length

is

%d\n",length);

i_sort(table,length);

}

void

i_sort(int

table[

],

int

length)

{

int

i,

j,

temp;

for

(i

=

0;

i

<

length

-1;

i++)

for

(j

=

i

+

1;

j

<

length;

j++)

if

(table[i]

>

table[j])

{

temp

=

table[i];

table[i]

=

table[j];

table[j]

=

temp;

}

}

The

following

are

examples

of

function

declarations

(also

called

function

prototypes):

double

square(float

x);

int

area(int

x,int

y);

static

char

*search(char);

The

following

example

illustrates

how

a

typedef

identifier

can

be

used

in

a

function

declarator:

typedef

struct

tm_fmt

{

int

minutes;

int

hours;

char

am_pm;

}

struct_t;

long

time_seconds(struct_t

arrival)

The

following

function

set_date

declares

a

pointer

to

a

structure

of

type

date

as

a

parameter.

date_ptr

has

the

storage

class

specifier

register.

void

set_date(register

struct

date

*date_ptr)

{

date_ptr->mon

=

12;

date_ptr->day

=

25;

date_ptr->year

=

87;

}

Function

Definitions

Chapter

7.

Functions

131

C99

requires

at

least

one

type

specifier

for

each

parameter

in

a

declaration,

which

reduces

the

number

of

situations

where

the

compiler

behaves

as

if

an

implicit

int

were

declared.

Prior

to

C99,

the

type

of

b

or

c

in

the

declaration

of

foo

is

ambiguous,

and

the

compiler

would

assume

an

implicit

int

for

both.

int

foo(

char

a,

b,

c

)

{

/*

statements

*/

}

For

backward

compatibility,

some

constructs

that

appear

to

violate

the

C99

rule

are

still

allowed.

For

example,

the

next

definition

of

foo

explicitly

declares

the

type

for

each

of

the

parameters.

int

foo(

int

a,

char

b,

int

c

)

{

/*

statements

*/

}

However,

the

following

definition,

which

uses

an

older

syntax,

is

accepted

as

equivalent,

only

if

b

and

c

are

not

referred

to

in

the

body

of

the

function.

int

foo(

int

a,

b,

c

)

int

a;

{

/*

okay

if

neither

b

nor

c

is

used

within

the

function

*/

}

The

main()

Function

When

a

program

begins

running,

the

system

calls

the

function

main,

which

marks

the

entry

point

of

the

program.

Every

program

must

have

one

function

named

main.

No

other

function

in

the

program

can

be

called

main.

A

main

function

has

one

of

two

forms:

int

main

(void)

block_statement

int

main

(int

argc,

char

**

argv)block_statement

The

argument

argc

is

the

number

of

command-line

arguments

passed

to

the

program.

The

argument

argv

is

a

pointer

to

an

array

of

strings,

where

argv[0]

is

the

name

you

used

to

run

your

program

from

the

command-line,

argv[1]

the

first

argument

that

you

passed

to

your

program,

argv[2]

the

second

argument,

and

so

on.

By

default,

main

has

the

storage

class

extern.

Arguments

to

main

The

function

main

can

be

declared

with

or

without

parameters.

int

main(int

argc,

char

*argv[])

Although

any

name

can

be

given

to

these

parameters,

they

are

usually

referred

to

as

argc

and

argv.

The

first

parameter,

argc

(argument

count),

has

type

int

and

indicates

how

many

arguments

were

entered

on

the

command

line.

The

second

parameter,

argv

(argument

vector),

has

type

array

of

pointers

to

char

array

objects.

char

array

objects

are

null-terminated

strings.

Function

Definitions

132

C

Language

Reference

The

value

of

argc

indicates

the

number

of

pointers

in

the

array

argv.

If

a

program

name

is

available,

the

first

element

in

argv

points

to

a

character

array

that

contains

the

program

name

or

the

invocation

name

of

the

program

that

is

being

run.

If

the

name

cannot

be

determined,

the

first

element

in

argv

points

to

a

null

character.

This

name

is

counted

as

one

of

the

arguments

to

the

function

main.

For

example,

if

only

the

program

name

is

entered

on

the

command

line,

argc

has

a

value

of

1

and

argv[0]

points

to

the

program

name.

Regardless

of

the

number

of

arguments

entered

on

the

command

line,

argv[argc]

always

contains

NULL.

Example

of

Arguments

to

main

The

following

program

backward

prints

the

arguments

entered

on

a

command

line

such

that

the

last

argument

is

printed

first:

#include

<stdio.h>

int

main(int

argc,

char

*argv[])

{

while

(--argc

>

0)

printf(“%s

”,

argv[argc]);

}

Invoking

this

program

from

a

command

line

with

the

following:

backward

string1

string2

gives

the

following

output:

string2

string1

The

arguments

argc

and

argv

would

contain

the

following

values:

Object

Value

argc

3

argv[0]

pointer

to

string

“backward”

argv[1]

pointer

to

string

“string1”

argv[2]

pointer

to

string

“string2”

argv[3]

NULL

Note:

Be

careful

when

entering

mixed

case

characters

on

a

command

line

because

some

environments

are

not

case-sensitive.

Also,

the

exact

format

of

the

string

pointed

to

by

argv[0]

is

system-dependent.

Calling

Functions

and

Passing

Arguments

The

arguments

of

a

function

call

are

used

to

initialize

the

parameters

of

the

function

definition.

Array

expressions

and

C

function

designators

as

arguments

are

converted

to

pointers

before

the

call.

Integral

and

floating-point

promotions

will

first

be

done

to

the

values

of

the

arguments

before

the

function

is

called.

The

type

of

an

argument

is

checked

against

the

type

of

the

corresponding

parameter

in

the

function

declaration.

The

size

expressions

of

each

variably

modified

parameter

are

evaluated

on

entry

to

the

function.

All

standard

and

main

Chapter

7.

Functions

133

user-defined

type

conversions

are

applied

as

necessary.

The

value

of

each

argument

expression

is

converted

to

the

type

of

the

corresponding

parameter

as

if

by

assignment.

For

example:

#include

<stdio.h>

#include

<math.h>

/*

Declaration

*/

extern

double

root(double,

double);

/*

Definition

*/

double

root(double

value,

double

base)

{

double

temp

=

exp(log(value)/base);

return

temp;

}

int

main(void)

{

int

value

=

144;

int

base

=

2;

printf("The

root

is:

%f\n",

root(value,

base));

return

0;

}

The

output

is

The

root

is:

12.000000

In

the

above

example,

because

the

function

root

is

expecting

arguments

of

type

double,

the

two

int

arguments

value

and

base

are

implicitly

converted

to

type

double

when

the

function

is

called.

The

order

in

which

arguments

are

evaluated

and

passed

to

the

function

is

implementation-defined.

For

example,

the

following

sequence

of

statements

calls

the

function

tester:

int

x;

x

=

1;

tester(x++,

x);

The

call

to

tester

in

the

example

may

produce

different

results

on

different

compilers.

Depending

on

the

implementation,

x++

may

be

evaluated

first

or

x

may

be

evaluated

first.

To

avoid

the

ambiguity

and

have

x++

evaluated

first,

replace

the

preceding

sequence

of

statements

with

the

following:

int

x,

y;

x

=

1;

y

=

x++;

tester(y,

x);

Passing

Arguments

by

Value

If

you

call

a

function

with

an

argument

that

corresponds

to

a

non-pointer

parameter,

you

have

passed

that

argument

by

value.

The

parameter

is

initialized

with

the

value

of

the

argument.

You

can

change

the

value

of

the

parameter

(if

that

parameter

has

not

been

declared

const)

within

the

scope

of

the

function,

but

these

changes

will

not

affect

the

value

of

the

argument

in

the

calling

function.

The

following

are

examples

of

passing

arguments

by

value:

The

following

statement

calls

the

function

printf,

which

receives

a

character

string

and

the

return

value

of

the

function

sum,

which

receives

the

values

of

a

and

b:

printf("sum

=

%d\n",

sum(a,b));

Calling

Functions

and

Passing

Arguments

134

C

Language

Reference

The

following

program

passes

the

value

of

count

to

the

function

increment,

which

increases

the

value

of

the

parameter

x

by

1.

/**

**

An

example

of

passing

an

argument

to

a

function

**/

#include

<stdio.h>

void

increment(int);

int

main(void)

{

int

count

=

5;

/*

value

of

count

is

passed

to

the

function

*/

increment(count);

printf("count

=

%d\n",

count);

return(0);

}

void

increment(int

x)

{

++x;

printf("x

=

%d\n",

x);

}

The

output

illustrates

that

the

value

of

count

in

main

remains

unchanged:

x

=

6

count

=

5

Related

References

v

“Function

Call

Operator

(

)”

on

page

90

Passing

Arguments

by

Reference

Passing

by

reference

refers

to

a

method

of

passing

arguments

where

the

value

of

an

argument

in

the

calling

function

can

be

modified

in

the

called

function.

To

pass

an

argument

by

reference,

you

declare

the

corresponding

parameter

with

a

pointer

type.

The

following

example

shows

how

arguments

are

passed

by

reference.

Note

that

pointer

parameters

are

initialized

with

pointer

values

when

the

function

is

called.

When

the

function

swapnum()

is

called,

the

actual

values

of

the

variables

a

and

b

are

exchanged

because

they

are

passed

by

reference.

The

output

is:

A

is

20

and

B

is

10

You

must

define

the

parameters

of

swapnum()

as

references

if

you

want

the

values

of

the

actual

arguments

to

be

modified

by

the

function

swapnum().

You

can

modify

the

values

of

nonconstant

objects

through

pointer

parameters.

The

following

example

demonstrates

this:

#include

<stdio.h>

int

main(void)

{

void

increment(int

*x);

int

count

=

5;

Calling

Functions

and

Passing

Arguments

Chapter

7.

Functions

135

/*

address

of

count

is

passed

to

the

function

*/

increment(&count);

printf("count

=

%d\n",

count);

return(0);

}

void

increment(int

*x)

{

++*x;

printf("*x

=

%d\n",

*x);

}

The

following

is

the

output

of

the

above

code:

*x

=

6

count

=

6

The

example

passes

the

address

of

count

to

increment().

Function

increment()

increments

count

through

the

pointer

parameter

x.

Function

Return

Values

You

must

return

a

value

from

a

function

unless

the

function

has

a

return

type

of

void.

The

return

value

is

specified

in

a

return

statement.

The

following

code

fragment

shows

a

function

definition,

including

the

return

statement:

int

add(int

i,

int

j)

{

return

i

+

j;

//

return

statement

}

The

function

add()

can

be

called

as

shown

in

the

following

code

fragment:

int

a

=

10,

b

=

20;

int

answer

=

add(a,

b);

//

answer

is

30

In

this

example,

the

return

statement

initializes

a

variable

of

the

returned

type.

The

variable

answer

is

initialized

with

the

int

value

30.

The

type

of

the

returned

expression

is

checked

against

the

returned

type.

All

standard

and

user-defined

conversions

are

performed

as

necessary.

Each

time

a

function

is

called,

new

copies

of

its

variables

with

automatic

storage

are

created.

Because

the

storage

for

these

automatic

variables

may

be

reused

after

the

function

has

terminated,

a

pointer

or

reference

to

an

automatic

variable

should

not

be

returned.

Related

References

v

“return

Statement”

on

page

155

v

“Value

of

a

return

Expression

and

Function

Value”

on

page

155

Pointers

to

Functions

A

pointer

to

a

function

points

to

the

address

of

the

executable

code

of

the

function.

You

can

use

pointers

to

call

functions

and

to

pass

functions

as

arguments

to

other

functions.

You

cannot

perform

pointer

arithmetic

on

pointers

to

functions.

Calling

Functions

and

Passing

Arguments

136

C

Language

Reference

The

type

of

a

pointer

to

a

function

is

based

on

both

the

return

type

and

parameter

types

of

the

function.

A

declaration

of

a

pointer

to

a

function

must

have

the

pointer

name

in

parentheses.

The

function

call

operator

()

has

a

higher

precedence

than

the

dereference

operator

*.

Without

them,

the

compiler

interprets

the

statement

as

a

function

that

returns

a

pointer

to

a

specified

return

type.

For

example:

int

*f(int

a);

/*

function

f

returning

an

int*

*/

int

(*g)(int

a);

/*

pointer

g

to

a

function

returning

an

int

*/

char

(*h)(int,

int)

/*

h

is

a

function

that

takes

two

integer

parameters

and

returns

char

*/

In

the

first

declaration,

f

is

interpreted

as

a

function

that

takes

an

int

as

argument,

and

returns

a

pointer

to

an

int.

In

the

second

declaration,

g

is

interpreted

as

a

pointer

to

a

function

that

takes

an

int

argument

and

that

returns

an

int.

Related

References

v

“Pointer

Conversions”

on

page

117

Inline

Functions

An

inline

function

is

one

for

which

the

compiler

copies

the

code

from

the

function

definition

directly

into

the

code

of

the

calling

function

rather

than

creating

a

separate

set

of

instructions

in

memory.

Instead

of

transferring

control

to

and

from

the

function

code

segment,

a

modified

copy

of

the

function

body

may

be

substituted

directly

for

the

function

call.

In

this

way,

the

performance

overhead

of

a

function

call

is

avoided.

A

function

is

declared

inline

by

using

the

inline

function

specifier.

The

inline

specifier

is

only

a

suggestion

to

the

compiler

that

an

inline

expansion

can

be

performed;

the

compiler

is

free

to

ignore

the

suggestion.

The

following

code

fragment

shows

an

inline

function

definition.

inline

int

add(int

i,

int

j)

{

return

i

+

j;

}

The

use

of

the

inline

specifier

does

not

change

the

meaning

of

the

function.

However,

the

inline

expansion

of

a

function

may

not

preserve

the

order

of

evaluation

of

the

actual

arguments.

Inline

expansion

also

does

not

change

the

linkage

of

a

function:

the

linkage

is

external

by

default.

In

C,

any

function

with

internal

linkage

can

be

inlined,

but

a

function

with

external

linkage

is

subject

to

restriction.

The

restrictions

are

as

follows:

v

If

the

inline

keyword

is

used

in

the

function

declaration,

then

the

function

definition

must

appear

in

the

same

translation

unit.

v

An

inline

definition

of

a

function

is

one

in

which

all

of

the

file-scope

declarations

for

it

in

the

same

translation

unit

include

the

inline

specifier

without

extern.

v

An

inline

definition

does

not

provide

an

external

definition

for

the

function:

an

external

definition

may

appear

in

another

translation

unit.

The

inline

definition

serves

as

an

alternative

to

the

external

definition

when

called

from

within

the

same

translation

unit.

The

C99

Standard

does

not

prescribe

whether

the

inline

or

external

definition

is

used.

In

C,

an

inline

definition

is

distinct

from

the

corresponding

external

definition

and

from

any

other

corresponding

inline

definitions

in

other

translation

units.

Pointers

to

Functions

Chapter

7.

Functions

137

When

source

code

is

compiled

allowing

language

extensions,

the

behavior

of

inline

functions

follows

the

GNU

C

semantics.

If

a

function

definition

has

extern

inline

explicitly

specified,

the

compiler

uses

the

extern

inline

definition

only

for

inlining.

The

behavior

resembles

macro

expansion.

If

an

extern

inline

definition

of

a

function

exists

in

a

header

file,

an

external

definition

for

the

function

without

extern

or

inline

must

be

available

from

another

file.

This

definition

is

used

for

calls

to

that

function

from

files

that

do

not

include

the

header

file.

The

following

example

illustrates

the

semantics

of

extern

inline.

When

compiled

with

the

GNU

semantics,

a

noninline

function

body

is

not

generated

for

two().

inline.h:

#include<stdio.h>

extern

inline

void

two(void){

//

GNU

C

uses

this

definition

only

for

inlining

printf("From

inline.h\n");

}

main.c:

#include

"inline.h"

int

main(void){

void

(*pTwo)()

=

two;

two();

(*pTwo)();

}

two.c:

#include<stdio.h>

void

two(){

printf("In

two.c\n");

}

The

output

below

shows

the

results

when

the

first

function

call

to

two

has

indeed

been

inlined.

Using

the

gcc

semantics

for

the

inline

keyword:

From

inline.h

In

two.c

The

compiler

might

still

choose

not

to

inline

the

extern

inline

function

two,

despite

the

presence

of

the

inline

function

specifier.

Related

References

v

“extern

Storage

Class

Specifier”

on

page

31

Nested

Functions

A

nested

function

is

a

function

defined

inside

the

definition

of

another

function.

It

can

be

defined

wherever

a

variable

declaration

is

permitted,

which

allows

nested

functions

within

nested

functions.

Within

the

containing

function,

the

nested

function

can

be

declared

prior

to

being

defined

by

using

the

auto

keyword.

Otherwise,

a

nested

function

has

internal

linkage.

The

language

feature

is

an

orthogonal

extension

to

C89

and

C99,

implemented

to

facilitate

porting

programs

developed

with

GNU

C.

A

nested

function

can

access

all

identifiers

of

the

containing

function

that

precede

its

definition.

Restrictions

and

limitations

Inline

Functions

138

C

Language

Reference

A

nested

function

must

not

be

called

after

the

containing

function

exits.

A

nested

function

cannot

use

a

goto

statement

to

jump

to

a

label

in

the

containing

function,

or

to

a

local

label

declared

with

the

__label__

keyword

inherited

from

the

containing

function.

Related

References

v

“Locally

Declared

Labels”

on

page

142

Inline

Functions

Chapter

7.

Functions

139

Inline

Functions

140

C

Language

Reference

Chapter

8.

Statements

A

statement,

the

smallest

independent

computational

unit,

specifies

an

action

to

be

performed.

In

most

cases,

statements

are

executed

in

sequence.

The

following

is

a

summary

of

the

statements

available

in

C:

v

labeled

statements

–

identifier

labels

–

case

labels

–

default

labels
v

expression

statements

v

block

or

compound

statements

v

selection

statements

–

if

statements

–

switch

statements
v

iteration

statements

–

while

statements

–

do

statements

–

for

statements
v

jump

statements

–

break

statements

–

continue

statements

–

return

statements

–

goto

statements
v

declaration

statements

Labels

There

are

three

kinds

of

labels:

identifier,

case,

and

default.

Identifier

label

statements

have

the

following

form:

��

identifier

:

statement

��

The

label

consists

of

the

identifier

and

the

colon

(:)

character.

A

label

name

must

be

unique

within

the

function

in

which

it

appears.

Case

and

default

label

statements

only

appear

in

switch

statements.

These

labels

are

accessible

only

within

the

closest

enclosing

switch

statement.

Case

statements

have

the

following

form:

��

case

constant_expression

:

statement

��

Default

label

statements

have

the

following

form:

��

default

:

statement

��

Examples

of

Labels

comment_complete

:

;

/*

null

statement

label

*/

test_for_null

:

if

(NULL

==

pointer)

©

Copyright

IBM

Corp.

1998,

2004

141

Related

References

v

“goto

Statement”

on

page

156

v

“switch

Statement”

on

page

146

Locally

Declared

Labels

A

locally

declared

label,

or

local

label,

is

an

identifier

label

that

is

declared

at

the

beginning

of

a

statement

expression

and

for

which

the

scope

is

the

statement

expression

in

which

it

is

declared

and

defined.

This

language

feature

is

an

orthogonal

extension

of

C

to

facilitate

handling

programs

developed

with

GNU

C.

A

local

label

can

be

used

as

the

target

of

a

goto

statement,

jumping

to

it

from

within

the

same

block

in

which

it

was

declared.

This

language

extension

is

particularly

useful

for

writing

macros

that

contain

nested

loops,

capitalizing

on

the

difference

between

its

statement

scope

and

the

function

scope

of

an

ordinary

label.

The

syntax

is

as

follows:

��

__label__

�

,

identifier

;

��

In

a

statement

expression,

the

declaration

of

a

local

label

must

appear

immediately

after

the

left

parenthesis

and

left

brace,

and

must

precede

any

ordinary

declarations

and

statements.

The

label

is

defined

in

the

usual

way,

with

a

name

and

a

colon,

within

the

statements

of

the

statement

expression.

Related

References

v

“Labels”

on

page

141

Labels

as

Values

The

address

of

a

label

defined

in

the

current

function

or

a

containing

function

can

be

obtained

and

used

as

a

value

wherever

a

constant

of

type

void*

is

valid.

The

address

is

the

return

value

when

the

label

is

the

operand

of

the

unary

operator

&&.

The

ability

to

use

the

address

of

label

as

a

value

is

an

orthogonal

extension

to

C99

and

C++,

implemented

to

facilitate

porting

programs

developed

with

GNU

C.

In

the

following

example,

the

computed

goto

statements

use

the

values

of

label1

and

label2

to

jump

to

those

spots

in

the

function.

int

main()

{

void

*

ptr1,

*ptr2;

...

label1:

...

...

label2:

...

...

ptr1

=

&&label1;

ptr2

=

&&label2;

if

(...)

{

goto

*ptr1;

}

else

{

goto

*ptr2;

}

...

}

Related

References

Labels

142

C

Language

Reference

v

“Label

Value

Operator

&&”

on

page

100

v

“Computed

goto”

on

page

157

Expression

Statements

An

expression

statement

contains

an

expression.

The

expression

can

be

null.

An

expression

statement

has

the

form:

��

expression

;

��

An

expression

statement

evaluates

expression,

then

discards

the

value

of

the

expression.

An

expression

statement

without

an

expression

is

a

null

statement.

Examples

of

Expressions

printf("Account

Number:

\n");

/*

call

to

the

printf

*/

marks

=

dollars

*

exch_rate;

/*

assignment

to

marks

*/

(difference

<

0)

?

++losses

:

++gain;

/*

conditional

increment

*/

Related

References

v

Chapter

5,

“Expressions

and

Operators,”

on

page

83

Block

Statement

A

block

statement,

or

compound

statement,

lets

you

group

any

number

of

data

definitions,

declarations,

and

statements

into

one

statement.

All

definitions,

declarations,

and

statements

enclosed

within

a

single

set

of

braces

are

treated

as

a

single

statement.

You

can

use

a

block

wherever

a

single

statement

is

allowed.

A

block

statement

has

the

form:

��

�

�

{

}

type_definition

statement

file_scope_data_declaration

block_scope_data_declaration

��

At

the

C89

language

level,

definitions

and

declarations

must

precede

any

statements.

For

C

at

the

C99

language

level

and

for

Standard

C++

and

C++98,

declarations

and

definitions

can

appear

anywhere,

mixed

in

with

other

code.

A

block

defines

a

local

scope.

If

a

data

object

is

usable

within

a

block

and

its

identifier

is

not

redefined,

all

nested

blocks

can

use

that

data

object.

Example

of

Blocks

The

following

program

shows

how

the

values

of

data

objects

change

in

nested

blocks:

Labels

Chapter

8.

Statements

143

/**

**

This

example

shows

how

data

objects

change

in

nested

blocks.

**/

#include

<stdio.h>

int

main(void)

{

int

x

=

1;

/*

Initialize

x

to

1

*/

int

y

=

3;

if

(y

>

0)

{

int

x

=

2;

/*

Initialize

x

to

2

*/

printf("second

x

=

%4d\n",

x);

}

printf("first

x

=

%4d\n",

x);

return(0);

}

The

program

produces

the

following

output:

second

x

=

2

first

x

=

1

Two

variables

named

x

are

defined

in

main.

The

first

definition

of

x

retains

storage

while

main

is

running.

However,

because

the

second

definition

of

x

occurs

within

a

nested

block,

printf("second

x

=

%4d\n",

x);

recognizes

x

as

the

variable

defined

on

the

previous

line.

Because

printf("first

x

=

%4d\n",

x);

is

not

part

of

the

nested

block,

x

is

recognized

as

the

first

definition

of

x.

if

Statement

An

if

statement

is

a

selection

statement

that

allows

more

than

one

possible

flow

of

control.

In

C,

an

if

statement

lets

you

conditionally

process

a

statement

when

the

specified

test

expression

evaluates

to

a

nonzero

value.

The

test

expression

must

be

of

arithmetic

or

pointer

type.

You

can

optionally

specify

an

else

clause

on

the

if

statement.

If

the

test

expression

evaluates

to

a

zero

value

and

an

else

clause

exists,

the

statement

associated

with

the

else

clause

runs.

If

the

test

expression

evaluates

to

1,

the

statement

following

the

expression

runs

and

the

else

clause

is

ignored.

An

if

statement

has

the

form:

��

if

(

expression

)

statement

else

statement

��

When

if

statements

are

nested

and

else

clauses

are

present,

a

given

else

is

associated

with

the

closest

preceding

if

statement

within

the

same

block.

A

single

statement

following

any

selection

statements

(if,

switch)

is

treated

as

a

compound

statement

containing

the

original

statement.

As

a

result

any

variables

declared

on

that

statement

will

be

out

of

scope

after

the

if

statement.

For

example:

if

(x)

int

i;

Block

Statement

144

C

Language

Reference

is

equivalent

to:

if

(x)

{

int

i;

}

Variable

i

is

visible

only

within

the

if

statement.

The

same

rule

applies

to

the

else

part

of

the

if

statement.

Examples

of

if

Statements

The

following

example

causes

grade

to

receive

the

value

A

if

the

value

of

score

is

greater

than

or

equal

to

90.

if

(score

>=

90)

grade

=

’A’;

The

following

example

displays

Number

is

positive

if

the

value

of

number

is

greater

than

or

equal

to

0.

If

the

value

of

number

is

less

than

0,

it

displays

Number

is

negative.

if

(number

>=

0)

printf("Number

is

positive\n");

else

printf("Number

is

negative\n");

The

following

example

shows

a

nested

if

statement:

if

(paygrade

==

7)

if

(level

>=

0

&&

level

<=

8)

salary

*=

1.05;

else

salary

*=

1.04;

else

salary

*=

1.06;

cout

<<

"salary

is

"

<<

salary

<<

endl;

The

following

example

shows

a

nested

if

statement

that

does

not

have

an

else

clause.

Because

an

else

clause

always

associates

with

the

closest

if

statement,

braces

might

be

needed

to

force

a

particular

else

clause

to

associate

with

the

correct

if

statement.

In

this

example,

omitting

the

braces

would

cause

the

else

clause

to

associate

with

the

nested

if

statement.

if

(kegs

>

0)

{

if

(furlongs

>

kegs)

fpk

=

furlongs/kegs;

}

else

fpk

=

0;

The

following

example

shows

an

if

statement

nested

within

an

else

clause.

This

example

tests

multiple

conditions.

The

tests

are

made

in

order

of

their

appearance.

If

one

test

evaluates

to

a

nonzero

value,

a

statement

runs

and

the

entire

if

statement

ends.

if

(value

>

0)

++increase;

else

if

(value

==

0)

++break_even;

else

++decrease;

if

Statement

Chapter

8.

Statements

145

switch

Statement

A

switch

statement

is

a

selection

statement

that

lets

you

transfer

control

to

different

statements

within

the

switch

body

depending

on

the

value

of

the

switch

expression.

The

switch

expression

must

evaluate

to

an

integral

or

enumeration

value.

The

body

of

the

switch

statement

contains

case

clauses

that

consist

of

v

A

case

label

v

An

optional

default

label

v

A

case

expression

v

A

list

of

statements.

If

the

value

of

the

switch

expression

equals

the

value

of

one

of

the

case

expressions,

the

statements

following

that

case

expression

are

processed.

If

not,

the

default

label

statements,

if

any,

are

processed.

A

switch

statement

has

the

form:

��

switch

(

expression

)

switch_body

��

The

switch

body

is

enclosed

in

braces

and

can

contain

definitions,

declarations,

case

clauses,

and

a

default

clause.

Each

case

clause

and

default

clause

can

contain

statements.

��

{

�

type_definition

file_scope_data_declaration

block_scope_data_declaration

�

case_clause

�

�

default_clause

�

case_clause

}

��

Note:

An

initializer

within

a

type_definition,

file_scope_data_declaration

or

block_scope_data_declaration

is

ignored.

A

case

clause

contains

a

case

label

followed

by

any

number

of

statements.

A

case

clause

has

the

form:

��

case_label

�

statement

��

A

case

label

contains

the

word

case

followed

by

an

integral

constant

expression

and

a

colon.

The

value

of

each

integral

constant

expression

must

represent

a

different

value;

you

cannot

have

duplicate

case

labels.

Anywhere

you

can

put

one

case

label,

you

can

put

multiple

case

labels.

A

case

label

has

the

form:

��

�

case

integral_constant_expression

:

��

switch

Statement

146

C

Language

Reference

A

default

clause

contains

a

default

label

followed

by

one

or

more

statements.

You

can

put

a

case

label

on

either

side

of

the

default

label.

A

switch

statement

can

have

only

one

default

label.

A

default_clause

has

the

form:

��

case_label

default

:

case_label

�

statement

��

The

switch

statement

passes

control

to

the

statement

following

one

of

the

labels

or

to

the

statement

following

the

switch

body.

The

value

of

the

expression

that

precedes

the

switch

body

determines

which

statement

receives

control.

This

expression

is

called

the

switch

expression.

The

value

of

the

switch

expression

is

compared

with

the

value

of

the

expression

in

each

case

label.

If

a

matching

value

is

found,

control

is

passed

to

the

statement

following

the

case

label

that

contains

the

matching

value.

If

there

is

no

matching

value

but

there

is

a

default

label

in

the

switch

body,

control

passes

to

the

default

labelled

statement.

If

no

matching

value

is

found,

and

there

is

no

default

label

anywhere

in

the

switch

body,

no

part

of

the

switch

body

is

processed.

When

control

passes

to

a

statement

in

the

switch

body,

control

only

leaves

the

switch

body

when

a

break

statement

is

encountered

or

the

last

statement

in

the

switch

body

is

processed.

If

necessary,

an

integral

promotion

is

performed

on

the

controlling

expression,

and

all

expressions

in

the

case

statements

are

converted

to

the

same

type

as

the

controlling

expression.

The

switch

expression

can

also

be

of

class

type

if

there

is

a

single

conversion

to

integral

or

enumeration

type.

Restrictions

and

Limitations

You

can

put

data

definitions

at

the

beginning

of

the

switch

body,

but

the

compiler

does

not

initialize

auto

and

register

variables

at

the

beginning

of

a

switch

body.

You

can

have

declarations

in

the

body

of

the

switch

statement.

You

cannot

use

a

switch

statement

to

jump

over

initializations.

When

the

scope

of

an

identifier

with

a

variably

modified

type

includes

a

case

or

default

label

of

a

switch

statement,

the

entire

switch

statement

is

considered

to

be

within

the

scope

of

that

identifier.

That

is,

the

declaration

of

the

identifier

must

precede

the

switch

statement.

Examples

of

switch

Statements

The

following

switch

statement

contains

several

case

clauses

and

one

default

clause.

Each

clause

contains

a

function

call

and

a

break

statement.

The

break

statements

prevent

control

from

passing

down

through

each

statement

in

the

switch

body.

If

the

switch

expression

evaluated

to

’/’,

the

switch

statement

would

call

the

function

divide.

Control

would

then

pass

to

the

statement

following

the

switch

body.

switch

Statement

Chapter

8.

Statements

147

char

key;

printf("Enter

an

arithmetic

operator\n");

scanf("%c",&key);

switch

(key)

{

case

’+’:

add();

break;

case

’-’:

subtract();

break;

case

’*’:

multiply();

break;

case

’/’:

divide();

break;

default:

printf("invalid

key\n");

break;

}

If

the

switch

expression

matches

a

case

expression,

the

statements

following

the

case

expression

are

processed

until

a

break

statement

is

encountered

or

the

end

of

the

switch

body

is

reached.

In

the

following

example,

break

statements

are

not

present.

If

the

value

of

text[i]

is

equal

to

’A’,

all

three

counters

are

incremented.

If

the

value

of

text[i]

is

equal

to

’a’,

lettera

and

total

are

increased.

Only

total

is

increased

if

text[i]

is

not

equal

to

’A’

or

’a’.

char

text[100];

int

capa,

lettera,

total;

//

...

for

(i=0;

i<sizeof(text);

i++)

{

switch

(text[i])

{

case

’A’:

capa++;

case

’a’:

lettera++;

default:

total++;

}

}

The

following

switch

statement

performs

the

same

statements

for

more

than

one

case

label:

/**

**

This

example

contains

a

switch

statement

that

performs

**

the

same

statement

for

more

than

one

case

label.

**/

#include

<stdio.h>

int

main(void)

{

int

month;

switch

Statement

148

C

Language

Reference

/*

Read

in

a

month

value

*/

printf("Enter

month:

");

scanf("%d",

&month);

/*

Tell

what

season

it

falls

into

*/

switch

(month)

{

case

12:

case

1:

case

2:

printf("month

%d

is

a

winter

month\n",

month);

break;

case

3:

case

4:

case

5:

printf("month

%d

is

a

spring

month\n",

month);

break;

case

6:

case

7:

case

8:

printf("month

%d

is

a

summer

month\n",

month);

break;

case

9:

case

10:

case

11:

printf("month

%d

is

a

fall

month\n",

month);

break;

case

66:

case

99:

default:

printf("month

%d

is

not

a

valid

month\n",

month);

}

return(0);

}

If

the

expression

month

has

the

value

3,

control

passes

to

the

statement:

printf("month

%d

is

a

spring

month\n",

month);

The

break

statement

passes

control

to

the

statement

following

the

switch

body.

while

Statement

A

while

statement

repeatedly

runs

the

body

of

a

loop

until

the

controlling

expression

evaluates

to

0.

A

while

statement

has

the

form:

��

while

(

expression

)

statement

��

The

expression

must

be

of

arithmetic

or

pointer

type.

The

expression

is

evaluated

to

determine

whether

or

not

to

process

the

body

of

the

loop.

switch

Statement

Chapter

8.

Statements

149

If

the

expression

evaluates

to

0,

the

body

of

the

loop

never

runs.

If

the

expression

does

not

evaluate

to

0,

the

loop

body

is

processed.

After

the

body

has

run,

control

passes

back

to

the

expression.

Further

processing

depends

on

the

value

of

the

condition.

A

break,

return,

or

goto

statement

can

cause

a

while

statement

to

end,

even

when

the

condition

does

not

evaluate

to

0.

Example

of

while

Statements

In

the

following

program,

item[index]

triples

and

is

printed

out,

as

long

as

the

value

of

the

expression

++index

is

less

than

MAX_INDEX.

When

++index

evaluates

to

MAX_INDEX,

the

while

statement

ends.

/**

**

This

example

illustrates

the

while

statement.

**/

#define

MAX_INDEX

(sizeof(item)

/

sizeof(item[0]))

#include

<stdio.h>

int

main(void)

{

static

int

item[

]

=

{

12,

55,

62,

85,

102

};

int

index

=

0;

while

(index

<

MAX_INDEX)

{

item[index]

*=

3;

printf("item[%d]

=

%d\n",

index,

item[index]);

++index;

}

return(0);

}

do

Statement

A

do

statement

repeatedly

runs

a

statement

until

the

test

expression

evaluates

to

0.

Because

of

the

order

of

processing,

the

statement

is

run

at

least

once.

A

do

statement

has

the

form:

��

do

statement

while

(

expression

)

;

��

The

expression

must

be

of

arithmetic

or

pointer

type.

The

body

of

the

loop

is

run

before

the

controlling

while

clause

is

evaluated.

Further

processing

of

the

do

statement

depends

on

the

value

of

the

while

clause.

If

the

while

clause

does

not

evaluate

to

0,

the

statement

runs

again.

When

the

while

clause

evaluates

to

0,

the

statement

ends.

A

break,

return,

or

goto

statement

can

cause

the

processing

of

a

do

statement

to

end,

even

when

the

while

clause

does

not

evaluate

to

0.

Example

of

do

Statements

The

following

example

keeps

incrementing

i

while

i

is

less

than

5:

while

Statement

150

C

Language

Reference

#include

<stdio.h>

int

main(void)

{

int

i

=

0;

do

{

i++;

printf("Value

of

i:

%d\n",

i);

}

while

(i

<

5);

return

0;

}

The

following

is

the

output

of

the

above

example:

Value

of

i:

1

Value

of

i:

2

Value

of

i:

3

Value

of

i:

4

Value

of

i:

5

for

Statement

A

for

statement

lets

you

do

the

following:

v

Evaluate

an

expression

before

the

first

iteration

of

the

statement

(initialization)

v

Specify

an

expression

to

determine

whether

or

not

the

statement

should

be

processed

(the

condition)

v

Evaluate

an

expression

after

each

iteration

of

the

statement

(often

used

to

increment

for

each

iteration)

v

Repeatedly

process

the

statement

if

the

controlling

part

does

not

evaluate

to

0.

A

for

statement

has

the

form:

��

for

(

;

;

)

expression1

expression2

expression3

�

�

statement

��

expression1

Is

the

initialization

expression.

It

is

evaluated

only

before

the

statement

is

processed

for

the

first

time.

You

can

use

this

expression

to

initialize

a

variable.

If

you

do

not

want

to

evaluate

an

expression

prior

to

the

first

iteration

of

the

statement,

you

can

omit

this

expression.

expression2

Is

the

conditional

expression.

It

is

evaluated

before

each

iteration

of

the

statement.

It

must

evaluate

to

an

arithmetic

or

pointer

type.

If

it

evaluates

to

0,

the

statement

is

not

processed

and

control

moves

to

the

next

statement

following

the

for

statement.

If

expression2

does

not

evaluate

to

0,

the

statement

is

processed.

If

you

omit

expression2,

it

is

as

if

the

expression

had

been

replaced

by

1,

and

the

for

statement

is

not

terminated

by

failure

of

this

condition.

expression3

Is

evaluated

after

each

iteration

of

the

statement.

This

expression

is

often

used

for

incrementing,

decrementing,

or

assigning

to

a

variable.

This

expression

is

optional.

do

Statement

Chapter

8.

Statements

151

A

break,

return,

or

goto

statement

can

cause

a

for

statement

to

end,

even

when

the

second

expression

does

not

evaluate

to

0.

If

you

omit

expression2,

you

must

use

a

break,

return,

or

goto

statement

to

end

the

for

statement.

You

can

also

use

expression1

to

declare

a

variable

as

well

as

initialize

it.

If

you

declare

a

variable

in

this

expression,

or

anywhere

else

in

statement,

that

variable

goes

out

of

scope

at

the

end

of

the

for

loop.

Examples

of

for

Statements

The

following

for

statement

prints

the

value

of

count

20

times.

The

for

statement

initially

sets

the

value

of

count

to

1.

After

each

iteration

of

the

statement,

count

is

incremented.

int

count;

for

(count

=

1;

count

<=

20;

count++)

printf("count

=

%d\n",

count);

The

following

sequence

of

statements

accomplishes

the

same

task.

Note

the

use

of

the

while

statement

instead

of

the

for

statement.

int

count

=

1;

while

(count

<=

20)

{

printf("count

=

%d\n",

count);

count++;

}

The

following

for

statement

does

not

contain

an

initialization

expression:

for

(;

index

>

10;

--index)

{

list[index]

=

var1

+

var2;

printf("list[%d]

=

%d\n",

index,

list[index]);

}

The

following

for

statement

will

continue

running

until

scanf

receives

the

letter

e:

for

(;;)

{

scanf("%c",

&letter);

if

(letter

==

’\n’)

continue;

if

(letter

==

’e’)

break;

printf("You

entered

the

letter

%c\n",

letter);

}

The

following

for

statement

contains

multiple

initializations

and

increments.

The

comma

operator

makes

this

construction

possible.

The

first

comma

in

the

for

expression

is

a

punctuator

for

a

declaration.

It

declares

and

initializes

two

integers,

i

and

j.

The

second

comma,

a

comma

operator,

allows

both

i

and

j

to

be

incremented

at

each

step

through

the

loop.

for

(int

i

=

0,

j

=

50;

i

<

10;

++i,

j

+=

50)

{

cout

<<

"i

=

"

<<

i

<<

"and

j

=

"

<<

j

<<

endl;

}

The

following

example

shows

a

nested

for

statement.

It

prints

the

values

of

an

array

having

the

dimensions

[5][3].

for

Statement

152

C

Language

Reference

for

(row

=

0;

row

<

5;

row++)

for

(column

=

0;

column

<

3;

column++)

printf("%d\n",

table[row][column]);

The

outer

statement

is

processed

as

long

as

the

value

of

row

is

less

than

5.

Each

time

the

outer

for

statement

is

executed,

the

inner

for

statement

sets

the

initial

value

of

column

to

zero

and

the

statement

of

the

inner

for

statement

is

executed

3

times.

The

inner

statement

is

executed

as

long

as

the

value

of

column

is

less

than

3.

break

Statement

A

break

statement

lets

you

end

an

iterative

(do,

for,

or

while)

statement

or

a

switch

statement

and

exit

from

it

at

any

point

other

than

the

logical

end.

A

break

may

only

appear

on

one

of

these

statements.

A

break

statement

has

the

form:

��

break

;

��

In

an

iterative

statement,

the

break

statement

ends

the

loop

and

moves

control

to

the

next

statement

outside

the

loop.

Within

nested

statements,

the

break

statement

ends

only

the

smallest

enclosing

do,

for,

switch,

or

while

statement.

In

a

switch

statement,

the

break

passes

control

out

of

the

switch

body

to

the

next

statement

outside

the

switch

statement.

continue

Statement

A

continue

statement

ends

the

current

iteration

of

a

loop.

Program

control

is

passed

from

the

continue

statement

to

the

end

of

the

loop

body.

A

continue

statement

has

the

form:

��

continue

;

��

A

continue

statement

can

only

appear

within

the

body

of

an

iterative

statement,

such

as

do,

for,

or

while.

The

continue

statement

ends

the

processing

of

the

action

part

of

an

iterative

statement

and

moves

control

to

the

loop

continuation

portion

of

the

statement.

For

example,

if

the

iterative

statement

is

a

for

statement,

control

moves

to

the

third

expression

in

the

condition

part

of

the

statement,

then

to

the

second

expression

(the

test)

in

the

condition

part

of

the

statement.

Within

nested

statements,

the

continue

statement

ends

only

the

current

iteration

of

the

do,

for,

or

while

statement

immediately

enclosing

it.

Examples

of

continue

Statements

The

following

example

shows

a

continue

statement

in

a

for

statement.

The

continue

statement

causes

processing

to

skip

over

those

elements

of

the

array

rates

that

have

values

less

than

or

equal

to

1.

/**

**

This

example

shows

a

continue

statement

in

a

for

statement.

**/

for

Statement

Chapter

8.

Statements

153

#include

<stdio.h>

#define

SIZE

5

int

main(void)

{

int

i;

static

float

rates[SIZE]

=

{

1.45,

0.05,

1.88,

2.00,

0.75

};

printf("Rates

over

1.00\n");

for

(i

=

0;

i

<

SIZE;

i++)

{

if

(rates[i]

<=

1.00)

/*

skip

rates

<=

1.00

*/

continue;

printf("rate

=

%.2f\n",

rates[i]);

}

return(0);

}

The

program

produces

the

following

output:

Rates

over

1.00

rate

=

1.45

rate

=

1.88

rate

=

2.00

The

following

example

shows

a

continue

statement

in

a

nested

loop.

When

the

inner

loop

encounters

a

number

in

the

array

strings,

that

iteration

of

the

loop

ends.

Processing

continues

with

the

third

expression

of

the

inner

loop.

The

inner

loop

ends

when

the

’\0’

escape

sequence

is

encountered.

/**

**

This

program

counts

the

characters

in

strings

that

are

part

**

of

an

array

of

pointers

to

characters.

The

count

excludes

**

the

digits

0

through

9.

**/

#include

<stdio.h>

#define

SIZE

3

int

main(void)

{

static

char

*strings[SIZE]

=

{

"ab",

"c5d",

"e5"

};

int

i;

int

letter_count

=

0;

char

*pointer;

for

(i

=

0;

i

<

SIZE;

i++)

/*

for

each

string

*/

/*

for

each

each

character

*/

for

(pointer

=

strings[i];

*pointer

!=

’\0’;

++pointer)

{

/*

if

a

number

*/

if

(*pointer

>=

’0’

&&

*pointer

<=

’9’)

continue;

letter_count++;

}

printf("letter

count

=

%d\n",

letter_count);

return(0);

}

The

program

produces

the

following

output:

letter

count

=

5

continue

Statement

154

C

Language

Reference

return

Statement

A

return

statement

ends

the

processing

of

the

current

function

and

returns

control

to

the

caller

of

the

function.

A

return

statement

has

one

of

two

forms:

��

return

expression

;

��

A

value-returning

function

must

include

an

expression

in

the

return

statement.

A

function

with

a

return

type

is

void

cannot

contain

an

expression

in

its

return

statement.

For

a

function

of

return

type

void,

a

return

statement

is

not

strictly

necessary.

If

the

end

of

such

a

function

is

reached

without

encountering

a

return

statement,

control

is

passed

to

the

caller

as

if

a

return

statement

without

an

expression

were

encountered.

In

other

words,

an

implicit

return

takes

place

upon

completion

of

the

final

statement,

and

control

automatically

returns

to

the

calling

function.

A

function

can

contain

multiple

return

statements.

For

example:

void

copy(

int

*a,

int

*b,

int

c)

{

/*

Copy

array

a

into

b,

assuming

both

arrays

are

the

same

size

*/

if

(!a

||

!b)

/*

if

either

pointer

is

0,

return

*/

return;

if

(a

==

b)

/*

if

both

parameters

refer

*/

return;

/*

to

same

array,

return

*/

if

(c

==

0)

/*

nothing

to

copy

*/

return;

for

(int

i

=

0;

i

<

c;

++i;)

/*

do

the

copying

*/

b[i]

=

a[1];

/*

implicit

return

*/

}

In

this

example,

the

return

statement

is

used

to

cause

a

premature

termination

of

the

function,

similar

to

a

break

statement.

An

expression

appearing

in

a

return

statement

is

converted

to

the

return

type

of

the

function

in

which

the

statement

appears.

If

no

implicit

conversion

is

possible,

the

return

statement

is

invalid.

Value

of

a

return

Expression

and

Function

Value

If

an

expression

is

present

on

a

return

statement,

the

value

of

the

expression

is

returned

to

the

caller.

If

the

data

type

of

the

expression

is

different

from

the

function

return

type,

conversion

of

the

return

value

takes

place

as

if

the

value

of

the

expression

were

assigned

to

an

object

with

the

same

function

return

type.

The

value

of

the

return

statement

for

a

function

of

return

type

void

means

that

the

function

does

not

return

a

value.

If

an

expression

is

not

given

on

a

return

statement

in

a

function

declared

with

a

non-void

return

type,

the

complier

issues

an

error

message.

return

Statement

Chapter

8.

Statements

155

You

cannot

use

a

return

statement

with

an

expression

when

the

function

is

declared

as

returning

type

void.

Examples

of

return

Statements

return;

/*

Returns

no

value

*/

return

result;

/*

Returns

the

value

of

result

*/

return

1;

/*

Returns

the

value

1

*/

return

(x

*

x);

/*

Returns

the

value

of

x

*

x

*/

The

following

function

searches

through

an

array

of

integers

to

determine

if

a

match

exists

for

the

variable

number.

If

a

match

exists,

the

function

match

returns

the

value

of

i.

If

a

match

does

not

exist,

the

function

match

returns

the

value

-1

(negative

one).

int

match(int

number,

int

array[

],

int

n)

{

int

i;

for

(i

=

0;

i

<

n;

i++)

if

(number

==

array[i])

return

(i);

return(-1);

}

goto

Statement

A

goto

statement

causes

your

program

to

unconditionally

transfer

control

to

the

statement

associated

with

the

label

specified

on

the

goto

statement.

A

goto

statement

has

the

form:

��

goto

label_identifier

;

��

Because

the

goto

statement

can

interfere

with

the

normal

sequence

of

processing,

it

makes

a

program

more

difficult

to

read

and

maintain.

Often,

a

break

statement,

a

continue

statement,

or

a

function

call

can

eliminate

the

need

for

a

goto

statement.

If

an

active

block

is

exited

using

a

goto

statement,

any

local

variables

are

destroyed

when

control

is

transferred

from

that

block.

You

cannot

use

a

goto

statement

to

jump

over

initializations.

A

goto

statement

is

allowed

to

jump

within

the

scope

of

a

variable

length

array,

but

not

past

any

declarations

of

objects

with

variably

modified

types.

Example

of

goto

Statements

The

following

example

shows

a

goto

statement

that

is

used

to

jump

out

of

a

nested

loop.

This

function

could

be

written

without

using

a

goto

statement.

/**

**

This

example

shows

a

goto

statement

that

is

used

to

**

jump

out

of

a

nested

loop.

**/

#include

<stdio.h>

void

display(int

matrix[3][3]);

int

main(void)

{

return

Statement

156

C

Language

Reference

int

matrix[3][3]=

{1,2,3,4,5,2,8,9,10};

display(matrix);

return(0);

}

void

display(int

matrix[3][3])

{

int

i,

j;

for

(i

=

0;

i

<

3;

i++)

for

(j

=

0;

j

<

3;

j++)

{

if

(

(matrix[i][j]

<

1)

||

(matrix[i][j]

>

6)

)

goto

out_of_bounds;

printf("matrix[%d][%d]

=

%d\n",

i,

j,

matrix[i][j]);

}

return;

out_of_bounds:

printf("number

must

be

1

through

6\n");

}

Computed

goto

A

computed

goto

is

a

goto

statement

for

which

the

target

is

a

label

from

the

same

function.

The

address

of

the

label

is

a

constant

of

type

void*,

and

is

obtained

by

applying

the

unary

label

value

operator

&&

to

the

label.

The

target

of

a

computed

goto

is

known

at

run

time,

and

all

computed

goto

statements

from

the

same

function

will

have

the

same

targets.

The

language

feature

is

an

orthogonal

extension

to

C99

and

C++,

implemented

to

facilitate

porting

programs

developed

with

GNU

C.

A

computed

goto

is

of

the

form

��

goto

*expression

;

��

where

*expression

is

an

expression

of

type

void*.

Related

References

v

“Labels

as

Values”

on

page

142

v

“Label

Value

Operator

&&”

on

page

100

Null

Statement

The

null

statement

performs

no

operation.

It

has

the

form:

��

;

��

A

null

statement

can

hold

the

label

of

a

labeled

statement

or

complete

the

syntax

of

an

iterative

statement.

Examples

of

Null

Statements

The

following

example

initializes

the

elements

of

the

array

price.

Because

the

initializations

occur

within

the

for

expressions,

a

statement

is

only

needed

to

finish

the

for

syntax;

no

operations

are

required.

for

(i

=

0;

i

<

3;

price[i++]

=

0)

;

goto

Statement

Chapter

8.

Statements

157

A

null

statement

can

be

used

when

a

label

is

needed

before

the

end

of

a

block

statement.

For

example:

void

func(void)

{

if

(error_detected)

goto

depart;

/*

further

processing

*/

depart:

;

/*

null

statement

required

*/

}

Null

Statements

158

C

Language

Reference

Chapter

9.

Preprocessor

Directives

The

preprocessor

is

a

program

that

is

invoked

by

the

compiler

to

process

code

before

compilation.

Commands

for

that

program,

known

as

directives,

are

lines

of

the

source

file

beginning

with

the

character

#,

which

distinguishes

them

from

lines

of

source

program

text.

The

effect

of

each

preprocessor

directive

is

a

change

to

the

text

of

the

source

code,

and

the

result

is

a

new

source

code

file,

which

does

not

contain

the

directives.

The

preprocessed

source

code,

an

intermediate

file,

must

be

a

valid

C

program,

because

it

becomes

the

input

to

the

compiler.

The

syntax

of

preprocessor

directives

is

independent

of,

but

similar

to,

the

syntax

of

the

rest

of

the

language,

and

the

lexical

conventions

of

the

preprocessor

differ

from

those

of

the

compiler.

The

preprocessor

recognizes

the

normal

C

tokens,

as

well

as

other

characters

that

enable

the

preprocessor

to

recognize

file

names,

the

presence

and

absence

of

white

space,

and

the

location

of

end-of-line

markers.

Preprocessor

directives

and

the

related

subject

of

macro

expansion

are

discussed

in

this

section.

After

an

overview

of

preprocessor

directives,

the

topics

covered

include

textual

macros,

file

inclusion,

ISO

standard

and

predefined

macro

names,

conditional

compilation

directives,

and

pragmas.

Preprocessor

Overview

Preprocessing

is

a

preliminary

operation

on

C

files

before

they

are

passed

to

the

compiler.

It

allows

you

to

do

the

following:

v

Replace

tokens

in

the

current

file

with

specified

replacement

tokens

v

Imbed

files

within

the

current

file

v

Conditionally

compile

sections

of

the

current

file

v

Generate

diagnostic

messages

v

Change

the

line

number

of

the

next

line

of

source

and

change

the

file

name

of

the

current

file

v

Apply

machine-specific

rules

to

specified

sections

of

code

A

token

is

a

series

of

characters

delimited

by

white

space.

The

only

white

space

allowed

on

a

preprocessor

directive

is

the

space,

horizontal

tab,

vertical

tab,

form

feed,

and

comments.

The

new-line

character

can

also

separate

preprocessor

tokens.

The

preprocessed

source

program

file

must

be

a

valid

C

program.

The

preprocessor

is

controlled

by

the

following

directives:

#define

Defines

a

macro.

#undef

Removes

a

preprocessor

macro

definition.

#error

Defines

text

for

a

compile-time

error

message.

#include

Inserts

text

from

another

source

file.

#if

Conditionally

suppresses

portions

of

source

code,

depending

on

the

result

of

a

constant

expression.

#ifdef

Conditionally

includes

source

text

if

a

macro

name

is

defined.

#ifndef

Conditionally

includes

source

text

if

a

macro

name

is

not

defined.

#else

Conditionally

includes

source

text

if

the

previous

#if,

#ifdef,

#ifndef,

or

#elif

test

fails.

#elif

Conditionally

includes

source

text

if

the

previous

#if,

#ifdef,

#ifndef,

or

#elif

test

fails,

depending

on

the

value

of

a

constant

expression.

©

Copyright

IBM

Corp.

1998,

2004

159

#endif

Ends

conditional

text.

#line

Supplies

a

line

number

for

compiler

messages.

#pragma

Specifies

implementation-defined

instructions

to

the

compiler.

Preprocessor

Directive

Format

Preprocessor

directives

begin

with

the

#

token

followed

by

a

preprocessor

keyword.

The

#

token

must

appear

as

the

first

character

that

is

not

white

space

on

a

line.

The

#

is

not

part

of

the

directive

name

and

can

be

separated

from

the

name

with

white

spaces.

A

preprocessor

directive

ends

at

the

new-line

character

unless

the

last

character

of

the

line

is

the

\

(backslash)

character.

If

the

\

character

appears

as

the

last

character

in

the

preprocessor

line,

the

preprocessor

interprets

the

\

and

the

new-line

character

as

a

continuation

marker.

The

preprocessor

deletes

the

\

(and

the

following

new-line

character)

and

splices

the

physical

source

lines

into

continuous

logical

lines.

White

space

is

allowed

between

backslash

and

the

end

of

line

character

or

the

physical

end

of

record.

However,this

white

space

is

usually

not

visible

during

editing.

Except

for

some

#pragma

directives,

preprocessor

directives

can

appear

anywhere

in

a

program.

Macro

Definition

and

Expansion

(#define)

A

preprocessor

define

directive

directs

the

preprocessor

to

replace

all

subsequent

occurrences

of

a

macro

with

specified

replacement

tokens.

A

preprocessor

#define

directive

has

the

form:

��

#

define

identifier

�

,

(

)

identifier

�

identifier

character

��

The

#define

directive

can

contain

an

object-like

definition

or

a

function-like

definition.

#define

versus

const

v

The

#define

directive

can

be

used

to

create

a

name

for

a

numerical,

character,

or

string

constant,

whereas

a

const

object

of

any

type

can

be

declared.

v

A

const

object

is

subject

to

the

scoping

rules

for

variables,

whereas

a

constant

created

using

#define

is

not.

v

Unlike

a

const

object,

the

value

of

a

macro

does

not

appear

in

the

intermediate

source

code

used

by

the

compiler

because

they

are

expanded

inline.

The

inline

expansion

makes

the

macro

value

unavailable

to

the

debugger.

v

A

macro

can

be

used

in

a

constant

expression,

such

as

an

array

bound,

whereas

a

const

object

cannot.

Related

References

v

“Object-Like

Macros”

on

page

161

Preprocessor

Overview

160

C

Language

Reference

v

“Function-Like

Macros”

v

“The

const

Type

Qualifier”

on

page

62

Object-Like

Macros

An

object-like

macro

definition

replaces

a

single

identifier

with

the

specified

replacement

tokens.

The

following

object-like

definition

causes

the

preprocessor

to

replace

all

subsequent

instances

of

the

identifier

COUNT

with

the

constant

1000

:

#define

COUNT

1000

If

the

statement

int

arry[COUNT];

appears

after

this

definition

and

in

the

same

file

as

the

definition,

the

preprocessor

would

change

the

statement

to

int

arry[1000];

in

the

output

of

the

preprocessor.

Other

definitions

can

make

reference

to

the

identifier

COUNT:

#define

MAX_COUNT

COUNT

+

100

The

preprocessor

replaces

each

subsequent

occurrence

of

MAX_COUNT

with

COUNT

+

100,

which

the

preprocessor

then

replaces

with

1000

+

100.

If

a

number

that

is

partially

built

by

a

macro

expansion

is

produced,

the

preprocessor

does

not

consider

the

result

to

be

a

single

value.

For

example,

the

following

will

not

result

in

the

value

10.2

but

in

a

syntax

error.

#define

a

10

a.2

Identifiers

that

are

partially

built

from

a

macro

expansion

may

not

be

produced.

Therefore,

the

following

example

contains

two

identifiers

and

results

in

a

syntax

error:

#define

d

efg

abcd

Function-Like

Macros

More

complex

than

object-like

macros,

a

function-like

macro

definition

declares

the

names

of

formal

parameters

within

parentheses,

separated

by

commas.

An

empty

formal

parameter

list

is

legal:

such

a

macro

can

be

used

to

simulate

a

function

that

takes

no

arguments.

C

adds

support

for

function-like

macros

with

a

variable

number

of

arguments.

Function-like

macro

definition:

An

identifier

followed

by

a

parameter

list

in

parentheses

and

the

replacement

tokens.

The

parameters

are

imbedded

in

the

replacement

code.

White

space

cannot

separate

the

identifier

(which

is

the

name

of

the

macro)

and

the

left

parenthesis

of

the

parameter

list.

A

comma

must

separate

each

parameter.

For

portability,

you

should

not

have

more

than

31

parameters

for

a

macro.

The

parameter

list

may

end

with

an

ellipsis

(...).

In

this

case,

the

identifier

__VA_ARGS__

may

appear

in

the

replacement

list.

Function-like

macro

invocation:

An

identifier

followed

by

a

comma-separated

list

of

arguments

in

#define

Chapter

9.

Preprocessor

Directives

161

parentheses.

The

number

of

arguments

should

match

the

number

of

parameters

in

the

macro

definition,

unless

the

parameter

list

in

the

definition

ends

with

an

ellipsis.

In

this

latter

case,

the

number

of

arguments

in

the

invocation

should

exceed

the

number

of

parameters

in

the

definition.

The

excess

are

called

trailing

arguments.

Once

the

preprocessor

identifies

a

function-like

macro

invocation,

argument

substitution

takes

place.

A

parameter

in

the

replacement

code

is

replaced

by

the

corresponding

argument.

If

trailing

arguments

are

permitted

by

the

macro

definition,

they

are

merged

with

the

intervening

commas

to

replace

the

identifier

__VA_ARGS__,

as

if

they

were

a

single

argument.

Any

macro

invocations

contained

in

the

argument

itself

are

completely

replaced

before

the

argument

replaces

its

corresponding

parameter

in

the

replacement

code.

A

macro

argument

can

be

empty

(consisting

of

zero

preprocessing

tokens).

For

example,

#define

SUM(a,b,c)

a

+

b

+

c

SUM(1,,3)

/*

No

error

message.

1

is

substituted

for

a,

3

is

substituted

for

c.

*/

If

the

identifier

list

does

not

end

with

an

ellipsis,

the

number

of

arguments

in

a

macro

invocation

must

be

the

same

as

the

number

of

parameters

in

the

corresponding

macro

definition.

During

parameter

substitution,

any

arguments

remaining

after

all

specified

arguments

have

been

substituted

(including

any

separating

commas)

are

combined

into

one

argument

called

the

variable

argument.

The

variable

argument

will

replace

any

occurrence

of

the

identifier

__VA_ARGS__

in

the

replacement

list.

The

following

example

illustrates

this:

#define

debug(...)

fprintf(stderr,

__VA_ARGS__)

debug("flag");

/*

Becomes

fprintf(stderr,

"flag");

*/

Commas

in

the

macro

invocation

argument

list

do

not

act

as

argument

separators

when

they

are:

v

In

character

constants

v

In

string

literals

v

Surrounded

by

parentheses

The

following

line

defines

the

macro

SUM

as

having

two

parameters

a

and

b

and

the

replacement

tokens

(a

+

b):

#define

SUM(a,b)

(a

+

b)

This

definition

would

cause

the

preprocessor

to

change

the

following

statements

(if

the

statements

appear

after

the

previous

definition):

c

=

SUM(x,y);

c

=

d

*

SUM(x,y);

In

the

output

of

the

preprocessor,

these

statements

would

appear

as:

c

=

(x

+

y);

c

=

d

*

(x

+

y);

Use

parentheses

to

ensure

correct

evaluation

of

replacement

text.

For

example,

the

definition:

#define

SQR(c)

((c)

*

(c))

requires

parentheses

around

each

parameter

c

in

the

definition

in

order

to

correctly

evaluate

an

expression

like:

#define

162

C

Language

Reference

y

=

SQR(a

+

b);

The

preprocessor

expands

this

statement

to:

y

=

((a

+

b)

*

(a

+

b));

Without

parentheses

in

the

definition,

the

correct

order

of

evaluation

is

not

preserved,

and

the

preprocessor

output

is:

y

=

(a

+

b

*

a

+

b);

Arguments

of

the

#

and

##

operators

are

converted

before

replacement

of

parameters

in

a

function-like

macro.

Once

defined,

a

preprocessor

identifier

remains

defined

and

in

scope

independent

of

the

scoping

rules

of

the

language.

The

scope

of

a

macro

definition

begins

at

the

definition

and

does

not

end

until

a

corresponding

#undef

directive

is

encountered.

If

there

is

no

corresponding

#undef

directive,

the

scope

of

the

macro

definition

lasts

until

the

end

of

the

translation

unit.

A

recursive

macro

is

not

fully

expanded.

For

example,

the

definition

#define

x(a,b)

x(a+1,b+1)

+

4

expands

x(20,10)

to

x(20+1,10+1)

+

4

rather

than

trying

to

expand

the

macro

x

over

and

over

within

itself.

After

the

macro

x

is

expanded,

it

is

a

call

to

function

x().

A

definition

is

not

required

to

specify

replacement

tokens.

The

following

definition

removes

all

instances

of

the

token

debug

from

subsequent

lines

in

the

current

file:

#define

debug

You

can

change

the

definition

of

a

defined

identifier

or

macro

with

a

second

preprocessor

#define

directive

only

if

the

second

preprocessor

#define

directive

is

preceded

by

a

preprocessor

#undef

directive.

The

#undef

directive

nullifies

the

first

definition

so

that

the

same

identifier

can

be

used

in

a

redefinition.

Within

the

text

of

the

program,

the

preprocessor

does

not

scan

character

constants

or

string

constants

for

macro

invocations.

Example

of

#define

Directives

The

following

program

contains

two

macro

definitions

and

a

macro

invocation

that

refers

to

both

of

the

defined

macros:

/**

**

This

example

illustrates

#define

directives.

**/

#include

<stdio.h>

#define

SQR(s)

((s)

*

(s))

#define

PRNT(a,b)

\

printf("value

1

=

%d\n",

a);

\

printf("value

2

=

%d\n",

b)

;

#define

Chapter

9.

Preprocessor

Directives

163

int

main(void)

{

int

x

=

2;

int

y

=

3;

PRNT(SQR(x),y);

return(0);

}

After

being

interpreted

by

the

preprocessor,

this

program

is

replaced

by

code

equivalent

to

the

following:

#include

<stdio.h>

int

main(void)

{

int

x

=

2;

int

y

=

3;

printf("value

1

=

%d\n",

(

(x)

*

(x)

)

);

printf("value

2

=

%d\n",

y);

return(0);

}

This

program

produces

the

following

output:

value

1

=

4

value

2

=

3

Variadic

Macro

Extensions

Variadic

macro

extensions

refer

to

two

extensions

to

C99

related

to

macros

with

variable

number

of

arguments.

One

extension

is

a

mechanism

for

renaming

the

variable

argument

identifier

from

__VA_ARGS__

to

a

user-defined

identifier.

This

extension

is

orthogonal

to

C99.

The

other

extension

provides

a

way

to

remove

the

dangling

comma

in

a

variadic

macro

when

no

variable

arguments

are

specified.

This

extension

is

non-orthogonal.

Both

extensions

have

been

implemented

to

facilitate

porting

programs

developed

with

GNU

C

and

C++.

An

Identifier

Instead

of

__VA_ARGS__

The

following

examples

demonstrate

the

use

of

an

identifier

in

place

of

__VA_ARGS__.

The

first

definition

of

the

macro

debug

exemplifies

the

usual

usage

of

__VA_ARGS__.

The

second

definition

shows

the

use

of

the

identifier

args

in

place

of

__VA_ARGS__.

#define

debug1(format,

...)

printf(format,

__VA_ARGS__)

#define

debug2(format,

args

...)

printf(format,

args)

Invocation

Result

of

Macro

Expansion

debug1("Hello

%s\n","World");

printf("Hello

%s\n","World");

debug2("Hello

%s\n","World");

printf("Hello

%s\n","World");

Trailing

Comma

Removal

The

preprocessor

removes

the

trailing

comma

if

the

variable

arguments

to

a

function

macro

are

omitted

or

empty

and

the

comma

followed

by

##

precedes

the

variable

argument

identifier

in

the

function

macro

definition.

#define

164

C

Language

Reference

Scope

of

Macro

Names

(#undef)

A

preprocessor

undef

directive

causes

the

preprocessor

to

end

the

scope

of

a

preprocessor

definition.

A

preprocessor

#undef

directive

has

the

form:

��

#

undef

identifier

��

If

the

identifier

is

not

currently

defined

as

a

macro,

#undef

is

ignored.

Example

of

#undef

Directives

The

following

directives

define

BUFFER

and

SQR:

#define

BUFFER

512

#define

SQR(x)

((x)

*

(x))

The

following

directives

nullify

these

definitions:

#undef

BUFFER

#undef

SQR

Any

occurrences

of

the

identifiers

BUFFER

and

SQR

that

follow

these

#undef

directives

are

not

replaced

with

any

replacement

tokens.

Once

the

definition

of

a

macro

has

been

removed

by

an

#undef

directive,

the

identifier

can

be

used

in

a

new

#define

directive.

#

Operator

The

#

(single

number

sign)

operator

converts

a

parameter

of

a

function-like

macro

into

a

character

string

literal.

For

example,

if

macro

ABC

is

defined

using

the

following

directive:

#define

ABC(x)

#x

all

subsequent

invocations

of

the

macro

ABC

would

be

expanded

into

a

character

string

literal

containing

the

argument

passed

to

ABC.

For

example:

Invocation

Result

of

Macro

Expansion

ABC(1)

"1"

ABC(Hello

there)

"Hello

there"

The

#

operator

should

not

be

confused

with

the

null

directive.

Use

the

#

operator

in

a

function-like

macro

definition

according

to

the

following

rules:

v

A

parameter

following

#

operator

in

a

function-

like

macro

is

converted

into

a

character

string

literal

containing

the

argument

passed

to

the

macro.

v

White-space

characters

that

appear

before

or

after

the

argument

passed

to

the

macro

are

deleted.

v

Multiple

white-space

characters

imbedded

within

the

argument

passed

to

the

macro

are

replaced

by

a

single

space

character.

v

If

the

argument

passed

to

the

macro

contains

a

string

literal

and

if

a

\

(backslash)

character

appears

within

the

literal,

a

second

\

character

is

inserted

before

the

original

\

when

the

macro

is

expanded.

#undef

Chapter

9.

Preprocessor

Directives

165

v

If

the

argument

passed

to

the

macro

contains

a

"

(double

quotation

mark)

character,

a

\

character

is

inserted

before

the

"

when

the

macro

is

expanded.

v

The

conversion

of

an

argument

into

a

string

literal

occurs

before

macro

expansion

on

that

argument.

v

If

more

than

one

##

operator

or

#

operator

appears

in

the

replacement

list

of

a

macro

definition,

the

order

of

evaluation

of

the

operators

is

not

defined.

v

If

the

result

of

the

macro

expansion

is

not

a

valid

character

string

literal,

the

behavior

is

undefined.

Example

of

the

#

Operator

The

following

examples

demonstrate

the

use

of

the

#

operator:

#define

STR(x)

#x

#define

XSTR(x)

STR(x)

#define

ONE

1

Invocation

Result

of

Macro

Expansion

STR(\n

"\n"

’\n’)

"\n

\"\\n\"

’\\n’"

STR(ONE)

"ONE"

XSTR(ONE)

"1"

XSTR("hello")

"\"hello\""

Macro

Concatenation

with

the

##

Operator

The

##

(double

number

sign)

operator

concatenates

two

tokens

in

a

macro

invocation

(text

and/or

arguments)

given

in

a

macro

definition.

If

a

macro

XY

was

defined

using

the

following

directive:

#define

XY(x,y)

x##y

the

last

token

of

the

argument

for

x

is

concatenated

with

the

first

token

of

the

argument

for

y.

Use

the

##

operator

according

to

the

following

rules:

v

The

##

operator

cannot

be

the

very

first

or

very

last

item

in

the

replacement

list

of

a

macro

definition.

v

The

last

token

of

the

item

in

front

of

the

##

operator

is

concatenated

with

first

token

of

the

item

following

the

##

operator.

v

Concatenation

takes

place

before

any

macros

in

arguments

are

expanded.

v

If

the

result

of

a

concatenation

is

a

valid

macro

name,

it

is

available

for

further

replacement

even

if

it

appears

in

a

context

in

which

it

would

not

normally

be

available.

v

If

more

than

one

##

operator

and/or

#

operator

appears

in

the

replacement

list

of

a

macro

definition,

the

order

of

evaluation

of

the

operators

is

not

defined.

Examples

of

the

##

Operator

The

following

examples

demonstrate

the

use

of

the

##

operator:

#define

ArgArg(x,

y)

x##y

#define

ArgText(x)

x##TEXT

#define

TextArg(x)

TEXT##x

#define

TextText

TEXT##text

#define

Jitter

1

#define

bug

2

#define

Jitterbug

3

#

Operator

166

C

Language

Reference

Invocation

Result

of

Macro

Expansion

ArgArg(lady,

bug)

"ladybug"

ArgText(con)

"conTEXT"

TextArg(book)

"TEXTbook"

TextText

"TEXTtext"

ArgArg(Jitter,

bug)

3

Preprocessor

Error

Directive

(#error)

A

preprocessor

error

directive

causes

the

preprocessor

to

generate

an

error

message

and

causes

the

compilation

to

fail.

A

#error

directive

has

the

form:

��

#

error

�

preprocessor_token

��

The

#error

directive

is

often

used

in

the

#else

portion

of

a

#if–#elif–#else

construct,

as

a

safety

check

during

compilation.

For

example,

#error

directives

in

the

source

file

can

prevent

code

generation

if

a

section

of

the

program

is

reached

that

should

be

bypassed.

For

example,

the

directive

#define

BUFFER_SIZE

255

#if

BUFFER_SIZE

<

256

#error

"BUFFER_SIZE

is

too

small."

#endif

generates

the

error

message:

BUFFER_SIZE

is

too

small.

Preprocessor

Warning

Directive

(#warning)

A

preprocessor

warning

directive

causes

the

preprocessor

to

generate

a

warning

message

but

allows

compilation

to

continue.

The

argument

to

#warning

is

not

subject

to

macro

expansion.

A

#warning

directive

has

the

form:

��

#

warning

�

preprocessor_token

��

The

preprocessor

#warning

directive

is

an

orthogonal

language

extension

provided

to

facilitate

handling

programs

developed

with

GNU

C.

The

IBM

implementation

preserves

multiple

white

spaces.

##

Operator

Chapter

9.

Preprocessor

Directives

167

File

Inclusion

(#include)

A

preprocessor

include

directive

causes

the

preprocessor

to

replace

the

directive

with

the

contents

of

the

specified

file.

A

preprocessor

#include

directive

has

the

form:

��

#

include

"

file_name

"

<

file_name

>

<

header_name

>

identifiers

��

In

all

C

implementations,

the

preprocessor

resolves

macros

contained

in

an

#include

directive.

After

macro

replacement,

the

resulting

token

sequence

must

consist

of

a

file

name

enclosed

in

either

double

quotation

marks

or

the

characters

<

and

>.

For

example:

#define

MONTH

<july.h>

#include

MONTH

If

the

file

name

is

enclosed

in

double

quotation

marks,

for

example:

#include

"payroll.h"

the

preprocessor

treats

it

as

a

user-defined

file,

and

searches

for

the

file

in

a

manner

defined

by

the

preprocessor.

If

the

file

name

is

enclosed

in

angle

brackets,

for

example:

#include

<stdio.h>

it

is

treated

as

a

system-defined

file,

and

the

preprocessor

searches

for

the

file

in

a

manner

defined

by

the

preprocessor.

The

new-line

and

>

characters

cannot

appear

in

a

file

name

delimited

by

<

and

>.

The

new-line

and

"

(double

quotation

marks)

character

cannot

appear

in

a

file

name

delimited

by

"

and

",

although

>

can.

Declarations

that

are

used

by

several

files

can

be

placed

in

one

file

and

included

with

#include

in

each

file

that

uses

them.

For

example,

the

following

file

defs.h

contains

several

definitions

and

an

inclusion

of

an

additional

file

of

declarations:

/*

defs.h

*/

#define

TRUE

1

#define

FALSE

0

#define

BUFFERSIZE

512

#define

MAX_ROW

66

#define

MAX_COLUMN

80

int

hour;

int

min;

int

sec;

#include

"mydefs.h"

You

can

embed

the

definitions

that

appear

in

defs.h

with

the

following

directive:

#include

"defs.h"

#include

168

C

Language

Reference

In

the

following

example,

a

#define

combines

several

preprocessor

macros

to

define

a

macro

that

represents

the

name

of

the

C

standard

I/O

header

file.

A

#include

makes

the

header

file

available

to

the

program.

#define

C_IO_HEADER

<stdio.h>

/*

The

following

is

equivalent

to:

*

#include

<stdio.h>

*/

#include

C_IO_HEADER

Specialized

File

Inclusion

(#include_next)

The

preprocessor

directive

#include_next

instructs

the

preprocessor

to

continue

searching

for

the

specified

file

name,

and

to

include

the

subsequent

instance

encountered

after

the

current

directory.

The

syntax

of

the

directive

is

similar

to

that

of

#include.

The

language

feature

is

an

orthogonal

extension

to

C.

It

extends

the

techniques

available

to

address

the

issue

of

duplicate

file

names

among

applications

and

shared

libraries.

ISO

Standard

Predefined

Macro

Names

C

provides

the

following

predefined

macro

names

as

specified

in

the

ISO

C

language

standard.

Except

for

__FILE__

and

__LINE__,

the

value

of

the

predefined

macros

remains

constant

throughout

the

translation

unit.

Macro

Name

Description

__DATE__

A

character

string

literal

containing

the

date

when

the

source

file

was

compiled.

The

value

of

__DATE__

changes

as

the

compiler

processes

any

include

files

that

are

part

of

your

source

program.

The

date

is

in

the

form:

"Mmm

dd

yyyy"

where:

Mmm

Represents

the

month

in

an

abbreviated

form

(Jan,

Feb,

Mar,

Apr,

May,

Jun,

Jul,

Aug,

Sep,

Oct,

Nov,

or

Dec).

dd

Represents

the

day.

If

the

day

is

less

than

10,

the

first

d

is

a

blank

character.

yyyy

Represents

the

year.

__FILE__

A

character

string

literal

containing

the

name

of

the

source

file.

The

value

of

__FILE__

changes

as

the

compiler

processes

include

files

that

are

part

of

your

source

program.

It

can

be

set

with

the

#line

directive.

__LINE__

An

integer

representing

the

current

source

line

number.

The

value

of

__LINE__

changes

during

compilation

as

the

compiler

processes

subsequent

lines

of

your

source

program.

It

can

be

set

with

the

#line

directive.

__STDC__

For

C,

the

integer

1

(one)

indicates

that

the

C

compiler

supports

the

ISO

standard.

If

you

set

the

language

level

to

anything

other

#include

Chapter

9.

Preprocessor

Directives

169

than

ANSI,

this

macro

is

undefined.

(When

a

macro

is

undefined,

it

behaves

as

if

it

had

the

integer

value

0

when

used

in

a

#if

statement.)

__STDC_HOSTED__

The

value

of

this

C99

macro

is

1,

indicating

that

the

C

compiler

is

a

hosted

implementation.

__STDC_VERSION__

The

integer

constant

of

type

long

int:

199409L

for

the

C89

language

level,

199901L

for

C99.

__TIME__

A

character

string

literal

containing

the

time

when

the

source

file

was

compiled.

The

value

of

__TIME__

changes

as

the

compiler

processes

any

include

files

that

are

part

of

your

source

program.

The

time

is

in

the

form:

"hh:mm:ss"

where:

hh

Represents

the

hour.

mm

Represents

the

minutes.

ss

Represents

the

seconds.

In

addition

to

the

predefined

macros

required

by

the

language

standard,

the

predefined

macro

__IBMC__

indicates

the

level

of

the

C

compiler.

The

value

is

an

integer

of

the

form

VRM,

where

V

Represents

the

version

number.

R

Represents

the

release

number.

M

Represents

the

modification

number.

Related

References

v

“Line

Control

(#line)”

on

page

174

v

“Object-Like

Macros”

on

page

161

Conditional

Compilation

Directives

A

preprocessor

conditional

compilation

directive

causes

the

preprocessor

to

conditionally

suppress

the

compilation

of

portions

of

source

code.

These

directives

test

a

constant

expression

or

an

identifier

to

determine

which

tokens

the

preprocessor

should

pass

on

to

the

compiler

and

which

tokens

should

be

bypassed

during

preprocessing.

The

directives

are:

v

#if

v

#ifdef

v

#else

v

#ifndef

v

#elif

v

#endif

The

preprocessor

conditional

compilation

directive

spans

several

lines:

v

The

condition

specification

line

(beginning

with

#if,

#ifdef,

or

#ifndef)

v

Lines

containing

code

that

the

preprocessor

passes

on

to

the

compiler

if

the

condition

evaluates

to

a

nonzero

value

(optional)

v

The

#elif

line

(optional)

v

Lines

containing

code

that

the

preprocessor

passes

on

to

the

compiler

if

the

condition

evaluates

to

a

nonzero

value

(optional)

#include

170

C

Language

Reference

v

The

#else

line

(optional)

v

Lines

containing

code

that

the

preprocessor

passes

on

to

the

compiler

if

the

condition

evaluates

to

zero

(optional)

v

The

preprocessor

#endif

directive

For

each

#if,

#ifdef,

and

#ifndef

directive,

there

are

zero

or

more

#elif

directives,

zero

or

one

#else

directive,

and

one

matching

#endif

directive.

All

the

matching

directives

are

considered

to

be

at

the

same

nesting

level.

You

can

nest

conditional

compilation

directives.

In

the

following

directives,

the

first

#else

is

matched

with

the

#if

directive.

#ifdef

MACNAME

/*

tokens

added

if

MACNAME

is

defined

*/

#

if

TEST

<=10

/*

tokens

added

if

MACNAME

is

defined

and

TEST

<=

10

*/

#

else

/*

tokens

added

if

MACNAME

is

defined

and

TEST

>

10

*/

#

endif

#else

/*

tokens

added

if

MACNAME

is

not

defined

*/

#endif

Each

directive

controls

the

block

immediately

following

it.

A

block

consists

of

all

the

tokens

starting

on

the

line

following

the

directive

and

ending

at

the

next

conditional

compilation

directive

at

the

same

nesting

level.

Each

directive

is

processed

in

the

order

in

which

it

is

encountered.

If

an

expression

evaluates

to

zero,

the

block

following

the

directive

is

ignored.

When

a

block

following

a

preprocessor

directive

is

to

be

ignored,

the

tokens

are

examined

only

to

identify

preprocessor

directives

within

that

block

so

that

the

conditional

nesting

level

can

be

determined.

All

tokens

other

than

the

name

of

the

directive

are

ignored.

Only

the

first

block

whose

expression

is

nonzero

is

processed.

The

remaining

blocks

at

that

nesting

level

are

ignored.

If

none

of

the

blocks

at

that

nesting

level

has

been

processed

and

there

is

a

#else

directive,

the

block

following

the

#else

directive

is

processed.

If

none

of

the

blocks

at

that

nesting

level

has

been

processed

and

there

is

no

#else

directive,

the

entire

nesting

level

is

ignored.

#if,

#elif

The

#if

and

#elif

directives

compare

the

value

of

constant_expression

to

zero:

��

#

if

elif

constant_expression

�

token_sequence

��

If

the

constant

expression

evaluates

to

a

nonzero

value,

the

lines

of

code

that

immediately

follow

the

condition

are

passed

on

to

the

compiler.

If

the

expression

evaluates

to

zero

and

the

conditional

compilation

directive

contains

a

preprocessor

#elif

directive,

the

source

text

located

between

the

#elif

and

the

next

#elif

or

preprocessor

#else

directive

is

selected

by

the

preprocessor

to

be

passed

on

to

the

compiler.

The

#elif

directive

cannot

appear

after

the

preprocessor

#else

directive.

Conditional

Compilation

Chapter

9.

Preprocessor

Directives

171

All

macros

are

expanded,

any

defined()

expressions

are

processed

and

all

remaining

identifiers

are

replaced

with

the

token

0.

The

constant_expression

that

is

tested

must

be

integer

constant

expressions

with

the

following

properties:

v

No

casts

are

performed.

v

Arithmetic

is

performed

using

long

int

values.

v

The

constant_expression

can

contain

defined

macros.

No

other

identifiers

can

appear

in

the

expression.

v

The

constant_expression

can

contain

the

unary

operator

defined.

This

operator

can

be

used

only

with

the

preprocessor

keyword

#if

or

#elif.

The

following

expressions

evaluate

to

1

if

the

identifier

is

defined

in

the

preprocessor,

otherwise

to

0:

defined

identifier

defined(identifier)

For

example:

#if

defined(TEST1)

||

defined(TEST2)

Note:

If

a

macro

is

not

defined,

a

value

of

0

(zero)

is

assigned

to

it.

In

the

following

example,

TEST

must

be

a

macro

identifier:

#if

TEST

>=

1

printf("i

=

%d\n",

i);

printf("array[i]

=

%d\n",

array[i]);

#elif

TEST

<

0

printf("array

subscript

out

of

bounds

\n");

#endif

#ifdef

The

#ifdef

directive

checks

for

the

existence

of

macro

definitions.

If

the

identifier

specified

is

defined

as

a

macro,

the

lines

of

code

that

immediately

follow

the

condition

are

passed

on

to

the

compiler.

The

preprocessor

#ifdef

directive

has

the

form:

��

#

ifdef

identifier

�

token_sequence

newline_character

��

The

following

example

defines

MAX_LEN

to

be

75

if

EXTENDED

is

defined

for

the

preprocessor.

Otherwise,

MAX_LEN

is

defined

to

be

50.

#ifdef

EXTENDED

#

define

MAX_LEN

75

#else

#

define

MAX_LEN

50

#endif

#ifndef

The

#ifndef

directive

checks

whether

a

macro

is

not

defined.

If

the

identifier

specified

is

not

defined

as

a

macro,

the

lines

of

code

immediately

follow

the

condition

are

passed

on

to

the

compiler.

The

preprocessor

#ifndef

directive

has

the

form:

Conditional

Compilation

172

C

Language

Reference

��

#

ifndef

identifier

�

token_sequence

newline_character

��

An

identifier

must

follow

the

#ifndef

keyword.

The

following

example

defines

MAX_LEN

to

be

50

if

EXTENDED

is

not

defined

for

the

preprocessor.

Otherwise,

MAX_LEN

is

defined

to

be

75.

#ifndef

EXTENDED

#

define

MAX_LEN

50

#else

#

define

MAX_LEN

75

#endif

#else

If

the

condition

specified

in

the

#if,

#ifdef,

or

#ifndef

directive

evaluates

to

0,

and

the

conditional

compilation

directive

contains

a

preprocessor

#else

directive,

the

lines

of

code

located

between

the

preprocessor

#else

directive

and

the

preprocessor

#endif

directive

is

selected

by

the

preprocessor

to

be

passed

on

to

the

compiler.

The

preprocessor

#else

directive

has

the

form:

��

#

else

�

token_sequence

newline_character

��

#endif

The

preprocessor

#endif

directive

ends

the

conditional

compilation

directive.

It

has

the

form:

��

#

endif

newline_character

��

Examples

of

Conditional

Compilation

Directives

The

following

example

shows

how

you

can

nest

preprocessor

conditional

compilation

directives:

#if

defined(TARGET1)

#

define

SIZEOF_INT

16

#

ifdef

PHASE2

#

define

MAX_PHASE

2

#

else

#

define

MAX_PHASE

8

#

endif

#elif

defined(TARGET2)

#

define

SIZEOF_INT

32

#

define

MAX_PHASE

16

#else

#

define

SIZEOF_INT

32

#

define

MAX_PHASE

32

#endif

The

following

program

contains

preprocessor

conditional

compilation

directives:

/**

**

This

example

contains

preprocessor

**

conditional

compilation

directives.

Conditional

Compilation

Chapter

9.

Preprocessor

Directives

173

**/

#include

<stdio.h>

int

main(void)

{

static

int

array[

]

=

{

1,

2,

3,

4,

5

};

int

i;

for

(i

=

0;

i

<=

4;

i++)

{

array[i]

*=

2;

#if

TEST

>=

1

printf("i

=

%d\n",

i);

printf("array[i]

=

%d\n",

array[i]);

#endif

}

return(0);

}

Line

Control

(#line)

A

preprocessor

line

control

directive

supplies

line

numbers

for

compiler

messages.

It

causes

the

compiler

to

view

the

line

number

of

the

next

source

line

as

the

specified

number.

A

preprocessor

#line

directive

has

the

form:

��

#

line

decimal_constant

"

file_name

"

characters

��

In

order

for

the

compiler

to

produce

meaningful

references

to

line

numbers

in

preprocessed

source,

the

preprocessor

inserts

#line

directives

where

necessary

(for

example,

at

the

beginning

and

after

the

end

of

included

text).

A

file

name

specification

enclosed

in

double

quotation

marks

can

follow

the

line

number.

If

you

specify

a

file

name,

the

compiler

views

the

next

line

as

part

of

the

specified

file.

If

you

do

not

specify

a

file

name,

the

compiler

views

the

next

line

as

part

of

the

current

source

file.

2000AIX

At

the

C99

language

level,

the

maximum

value

of

the

#line

preprocessing

directive

is

2147483647.

In

all

C

implementations,

the

token

sequence

on

a

#line

directive

is

subject

to

macro

replacement.

After

macro

replacement,

the

resulting

character

sequence

must

consist

of

a

decimal

constant,

optionally

followed

by

a

file

name

enclosed

in

double

quotation

marks.

Example

of

the

#line

Directive

You

can

use

#line

control

directives

to

make

the

compiler

provide

more

meaningful

error

messages.

The

following

program

uses

#line

control

directives

to

give

each

function

an

easily

recognizable

line

number:

Conditional

Compilation

174

C

Language

Reference

/**

**

This

example

illustrates

#line

directives.

**/

#include

<stdio.h>

#define

LINE200

200

int

main(void)

{

func_1();

func_2();

}

#line

100

func_1()

{

printf("Func_1

-

the

current

line

number

is

%d\n",_

LINE

_);

}

#line

LINE200

func_2()

{

printf("Func_2

-

the

current

line

number

is

%d\n",_

LINE

_);

}

This

program

produces

the

following

output:

Func_1

-

the

current

line

number

is

102

Func_2

-

the

current

line

number

is

202

Null

Directive

(#)

The

null

directive

performs

no

action.

It

consists

of

a

single

#

on

a

line

of

its

own.

The

null

directive

should

not

be

confused

with

the

#

operator

or

the

character

that

starts

a

preprocessor

directive.

In

the

following

example,

if

MINVAL

is

a

defined

macro

name,

no

action

is

performed.

If

MINVAL

is

not

a

defined

identifier,

it

is

defined

1.

#ifdef

MINVAL

#

#else

#define

MINVAL

1

#endif

Related

References

v

“#

Operator”

on

page

165

Pragma

Directives

(#pragma)

A

pragma

is

an

implementation-defined

instruction

to

the

compiler.

It

has

the

general

form:

��

#

pragma

STDC

�

character_sequence

new-line

��

where

character_sequence

is

a

series

of

characters

giving

a

specific

compiler

instruction

and

arguments,

if

any.

The

token

STDC

indicates

a

standard

pragma;

consequently,

no

macro

substitution

takes

place

on

the

directive.

The

new-line

character

must

terminate

a

pragma

directive.

#line

Chapter

9.

Preprocessor

Directives

175

The

character_sequence

on

a

pragma

is

subject

to

macro

substitutions.

For

example,

#define

XX_ISO_DATA

isolated_call(LG_ISO_DATA)

//

...

#pragma

XX_ISO_DATA

More

than

one

pragma

construct

can

be

specified

on

a

single

#pragma

directive.

The

compiler

ignores

unrecognized

pragmas.

The

available

pragmas

are

discussed

in

XL

C

Compiler

Reference.

Standard

Pragmas

A

standard

pragma

is

a

pragma

preprocessor

directive

for

which

the

C

Standard

defines

the

syntax

and

semantics

and

for

which

no

macro

replacement

is

performed.

A

standard

pragma

must

be

one

of

the

following:

��

#pragma

STDC

FP_CONTRACT

FENV_ACCESS

CX_LIMITED_RANGE

DEFAULT

ON

OFF

new-line

��

The

default

for

#pragma

STDC

CX_LIMITED_RANGE

is

OFF.

The

C

standard

pragmas

are

discussed

in

XL

C

Compiler

Reference.

The

_Pragma

Operator

The

unary

operator

_Pragma

allows

a

preprocessor

macro

to

be

contained

in

a

pragma

directive.

A

_Pragma

expression

has

the

following

form:

��

_Pragma

(

string_literal

)

��

The

string_literal

may

be

prefixed

with

L,

making

it

a

wide-string

literal.

The

string

literal

is

destringized

and

tokenized.

The

resulting

sequence

of

tokens

is

processed

as

if

it

appeared

in

a

pragma

directive.

For

example:

_Pragma

(

"align(power)"

)

would

be

equivalent

to

#pragma

align(power)

#pragma

176

C

Language

Reference

Appendix

A.

The

IBM

C

Language

Extensions

This

appendix

presents

the

IBM

C

extensions

by

category.

The

major

categories

are

whether

an

extension

is

orthogonal

or

non-orthogonal

to

a

base

language.

An

orthogonal

extension

does

not

interfere

with

the

base

language.

Orthogonal

extensions

are

collectively

enabled

by

compiling

in

one

of

the

extended

modes:

extended,

extc89,

and

extc99.

The

extended

mode

is

based

on

C89.

Non-orthogonal

extensions

on

the

other

hand

may

change

the

syntax

or

semantics

of

a

base

language

feature.

Therefore,

each

IBM

C

extension

that

is

non-orthogonal

to

the

base

language

or

that

conflicts

with

its

GNU

C

implementation

must

be

explicitly

requested

by

an

option.

The

syntax

for

the

positive

and

negative

langlvl

suboptions

is:

-qlanglvl=lang_suboption

-qlanglvl=nolang_suboption

Options

and

suboptions

are

case-insensitive.

Orthogonal

Extensions

The

orthogonal

IBM

C

extensions

fall

into

three

subgroupings:

language

features

with

individual

option

controls

from

previous

releases,

those

that

are

C99

features,

and

those

related

to

GNU

C.

Existing

IBM

C

Extensions

with

Individual

Option

Controls

Some

existing

language

features

that

are

orthogonal

to

C89

have

individual

positive

and

negative

option

controls.

For

backward

compatibility,

these

compiler

options

and

suboptions

continue

to

be

supported.

Enabling

a

feature

redundantly

will

not

change

its

enabled

state.

The

IBM

C

language

extensions

with

individual

option

controls

Language

Extension

Compiler

Option

Remarks

dollar

sign

in

identifier

-qdollar

Accepted

by

all

levels.

UCS

-qlanglvl=ucs

The

negative

setting,

-qlanglvl=noucs,

is

ignored

by

STDC99

with

an

informational

message.

digraph

-qdigraph

The

negative

setting,

-qnodigraph,

is

ignored

by

STDC99

with

an

informational

message.

IBM

C

Extensions:

C99

Features

as

Extensions

to

C89

Most

of

the

language

features

related

to

C99

are

orthogonal

to

C89.

The

exception

is

the

restrict

keyword,

which

invades

the

user’s

variable

name

space.

You

can

request

the

support

explicitly

by

using

the

-qkeyword=restrict

option.

C99

features

as

extensions

to

C89

Language

Feature

Remarks

The

restrict

type

qualifier

Defines

a

restricted

pointer

©

Copyright

IBM

Corp.

1998,

2004

177

C99

features

as

extensions

to

C89

Language

Feature

Remarks

Variable

length

arrays

-qlanglvl=c99vla

Flexible

array

members

C99

allows

a

flexible

array

member

only

at

the

end

of

a

struct.

GNU

C

allows

it

anywhere

in

the

structure.

Support

for

the

complex

data

type

The

long

long

int

type

Support

for

hexadecimal

floating-point

constants

Removal

of

implicit

int

Refined

definition

of

integer

division

Truncation

toward

zero

Universal

character

names

Extended

identifiers

Limit

removed

for

internal

and

external

names

Compound

literals

Designated

initializers

C++

style

comments

Removal

of

implicit

function

declaration

Preprocessor

arithmetic

done

in

intmax_t/uintmax_t

Mixed

declarations

and

code

New

block

scopes

for

selection

and

iteration

statements

Integer

constant

type

rules

To

accommodate

the

long

long

int

type

Integer

promotion

rules

To

accommodate

the

long

long

int

type

vararg

macros

Function-like

macros

with

variable

arguments

Trailing

comma

allowed

in

enum

declaration

Definition

of

the

_Bool

type

Idempotent

type

qualifiers

Also

known

as

″duplicate

type

qualifiers″

Empty

macro

arguments

Additional

predefined

macro

names

_Pragma

preprocessing

operator

Standard

pragmas

#pragma

STDC

FP_CONTRACT#pragma

STDC

FENV_ACCESS#pragma

STDC

CX_LIMITED_RANGE

__func__

predefined

identifier

UTF-16,

UTF-32

literals

IBM

C

Extensions

Related

to

GNU

C

The

IBM

C

compiler

recognizes

the

following

subset

of

the

GNU

C

language

extensions.

The

descriptive

labels

used

in

the

following

table

are

similar

to

those

in

the

GNU

C

documentation.

178

C

Language

Reference

The

IBM

C

extensions

related

to

GNU

C

Language

Feature

Remarks

Statements

and

Declarations

in

Expressions

Locally

Declared

Labels

Labels

as

Values

Including

computed

goto

statements

Nested

Functions

Referring

to

a

Type

with

typeof

The

alternate

spelling,

__typeof__,

is

recommended.

Generalized

Lvalues

Double-Word

Integers

GNU

C

Complex

Types

GNU

C

Hexadecimal

Float

Constants

Arrays

of

Length

Zero

Arrays

of

Variable

Length

Macros

with

a

Variable

Number

of

Arguments

Using

an

identifier

in

place

of

__VA_ARGS__

Non-Lvalue

Arrays

May

Have

Subscripts

Non-Constant

Initializers

Compound

Literals

Cast

to

a

Union

Type

Declaring

Attributes

of

Functions

Function

prototype

overriding

a

nonprototype

definition

__alignof__

to

inquire

about

the

alignment

Specifying

Attributes

of

Variables

Specifying

Attributes

of

Types

Assembler

Instructions

with

C

Expression

Operands

Variables

in

Specified

Registers

The

compiler

accepts

the

GNU

syntax,

but

ignores

the

semantics.

Alternate

Keywords

#warning

#include_next

Non-Orthogonal

Extensions

The

non-orthogonal

IBM

C

extensions

fall

into

three

subgroupings:

language

features

from

previous

releases,

those

that

are

C99

features,

and

those

related

to

GNU

C.

Existing

IBM

C

Extensions

with

Individual

Option

Controls

Strictly

speaking,

the

IBM

C

language

feature

upconv

is

correctly

classified

as

non-orthogonal.

However,

it

is

automatically

enabled

as

part

of

the

extended

language

level.

This

is

the

major

difference

between

extended

and

extc89.

Appendix

A.

The

IBM

C

Language

Extensions

179

The

non-orthogonal

IBM

C

language

extensions

Language

Extension

Compiler

Option

Remarks

long

long

literal

-qlonglit

Ignored

by

stdc99

with

a

warning.

upconv

-qupconv

Available

by

default

at

the

-qlanglvl=extended

language

level.

IBM

C

Extensions:

C99

Features

as

Extensions

to

C89

The

non-orthogonal

IBM

C

language

extensions

Language

Extension

Remarks

The

inline

keyword

Non-orthogonal

to

C89

and

GNU

C.

Flexible

array

members

C99

allows

a

flexible

array

member

only

at

the

end

of

a

struct.

GNU

C

allows

it

anywhere

in

the

structure.

IBM

C

Extensions

Related

to

GNU

C

The

non-orthogonal

GNU

C

extension

Language

Extension

Compiler

Suboption

and

Remarks

Macros

with

a

Variable

Number

of

Arguments

Removing

the

trailing

comma

when

no

variable

arguments

are

specified.

180

C

Language

Reference

Appendix

B.

Predefined

Macros

Related

to

Language

Features

The

predefined

macros

provided

for

XL

C

fall

into

two

general

categories:

those

related

to

language

features

and

those

related

to

the

AIX

platform.

Those

related

to

language

features

are

presented

here.

The

platform-related

macros

are

described

in

XL

C

Compiler

Reference.

The

following

macros

test

or

enable

C99

features,

features

related

to

GNU

C/C++,

and

other

IBM

language

extensions.

A

macro

is

defined

to

value

of

1

if

the

listed

feature

is

supported

under

the

specified

qlanglvl

suboption.

If

the

feature

is

not

supported,

then

the

macro

is

undefined.

All

predefined

macros

are

protected.

Predefined

Macros

for

C99

Features,

Features

Related

to

GNU

C/C++

and

Other

IBM

Extensions

Feature

Predefined

Macro

Name

Supported

in

-qlanglvl

Suboption

Complex

number

_COMPLEX_I

Requires

an

appropriate

suboption

of

compiler

option

-qlanglvl.

Nested

function

_IBM_NESTED_FUNCTION

extc89,

extc99,

extended

flexible

array

member

__C99_FLEXIBLE_ARRAY_MEMBER

stdc99,

extc99

duplicated

type

qualifier

__C99_DUP_TYPE_QUALIFIER

stdc99,

extc99,

extc89,

extended

new

limit

for

#line

__C99_MAX_LINE_NUMBER

stdc99,

extc99,

extc89,

extended

_Bool

type

__C99_BOOL

stdc99,

extc99,

extc89,

extended

long

long

type

__C99_LLONG

stdc99,

extc99

inline

function

specifier

__C99_INLINE

stdc99,

extc99,

extc89,

extended

restrict

qualifier

__C99_RESTRICT

stdc99,

extc99

-qkeyword=restrict

static

keyword

in

array

declaration

__C99_STATIC_ARRAY_SIZE

stdc99,

extc99,

extc89,

extended

universal

character

name

__C99_UCN

stdc99,

extc99,

extc89,

extended

variable

length

arrays

__C99_VAR_LEN_ARRAY

stdc99,

extc99,

extc89,

extended

__func__

keyword

__C99__FUNC__

stdc99,

extc99,

extc89,

extended

hexadecimal

floating

constants

__C99_HEX_FLOAT_CONST

stdc99,

extc99,

extc89,

extended

C++

style

comments

__C99_CPLUSCMT

stdc99,

extc99

compound

literals

__C99_COMPOUND_LITERAL

stdc99,

extc99,

extc89,

extended

designated

initialization

__C99_DESIGNATED_INITIALIZER

stdc99,

extc99,

extc89,

extended

mixed

declaration

and

code

__C99_MIXED_DECL_AND_CODE

stdc99,

extc99,

extc89,

extended

function-like

macros

with

variable

arguments

__C99_MACRO_WITH_VA_ARGS

stdc99,

extc99,

extc89,

extended

empty

macro

arguments

__C99_EMPTY_MACRO_ARGUMENTS

stdc99,

extc99,

extc89,

extended

standard

pragmas

__C99_STD_PRAGMAS

stdc99,

extc99,

extc89,

extended

_Pragma

operator

__C99_PRAGMA_OPERATOR

stdc99,

extc99,

extc89,

extended

complex

type

__C99_COMPLEX

stdc99,

extc99,

extc89,

extended

type

generic

macros

<tgmath.h>

__C99_TGMATH

stdc99,

extc99,

extc89,

extended

implicit

function

declaration

not

supported

__C99_REQUIRE_FUNC_DECL

stdc99

concatenation

of

wide

string

and

non-wide

string

__C99_MIXED_STRING_CONCAT

stdc99,

extc99,

extc89,

extended

subscripting

in

non-lvalue

arrays

__C99_NON_LVALUE_ARRAY_SUB

stdc99,

extc99,

extc89,

extended

non-constant

array

initializers

__C99_NON_CONST_AGGR_INITIALIZER

stdc99,

extc99,

extc89,

extended

GNU

C

inline

asm

__IBM_GCC_ASM

extc89,

extc99,

extended

local

labels

__IBM_LOCAL_LABEL

extc99,

extc89,

extended

__alignof__

__IBM__ALIGNOF__

extc99,

extc89,

extended

__typeof__

keyword

__IBM__TYPEOF__

extc99,

extc89,

extended,

-qkeyword=typeof

typeof

keyword

__IBM__TYPEOF__

-qkeyword=typeof

function

attributes

__IBM_ATTRIBUTES

extc99,

extc89,

extended

©

Copyright

IBM

Corp.

1998,

2004

181

Predefined

Macros

for

C99

Features,

Features

Related

to

GNU

C/C++

and

Other

IBM

Extensions

Feature

Predefined

Macro

Name

Supported

in

-qlanglvl

Suboption

type

attributes

__IBM_ATTRIBUTES

extc99,

extc89,

extended

variable

attributes

__IBM_ATTRIBUTES

extc99,

extc89,

extended

dollar

signs

in

identifiers

__IBM_DOLLAR_IN_ID

extc99,

extc89,

extended

generalized

lvalues

__IBM_GENERALIZED_LVALUE

extc99,

extc89,

extended

gnu

89

__inline__

support

__IBM_GCC__INLINE__

extc99,

extc89,

extended

explicit

register

variables

__IBM_REGISTER_VARS

extc99,

extc89,

extended

alternate

keywords

__IBM_ALTERNATE_KEYWORDS

extc99,

extc89,

extended

__extension__

__IBM_EXTENSION_KEYWORD

extc99,

extc89,

extended

#assert,

#unassert,

#cpu,

#machine,

#system

__IBM_PP_PREDICATE

extc99,

extc89,

extended

#warning

__IBM_PP_WARNING

extc99,

extc89,

extended

#include_next

__IBM_INCLUDE_NEXT

extc99,

extc89,

extended

UTF-16

and

UTF-32

string

literals

__IBM_UTF_LITERALS

extc99,

extc89,

extended

182

C

Language

Reference

Notices

This

information

was

developed

for

products

and

services

offered

in

the

U.S.A.

IBM

may

not

offer

the

products,

services,

or

features

discussed

in

this

document

in

other

countries.

Consult

your

local

IBM

representative

for

information

on

the

products

and

services

currently

available

in

your

area.

Any

reference

to

an

IBM

product,

program,

or

service

is

not

intended

to

state

or

imply

that

only

that

IBM

product,

program,

or

service

may

be

used.

Any

functionally

equivalent

product,

program,

or

service

that

does

not

infringe

any

IBM

intellectual

property

right

may

be

used

instead.

However,

it

is

the

user’s

responsibility

to

evaluate

and

verify

the

operation

of

any

non-IBM

product,

program,

or

service.

IBM

may

have

patents

or

pending

patent

applications

covering

subject

matter

described

in

this

document.

The

furnishing

of

this

document

does

not

give

you

any

license

to

these

patents.

You

can

send

license

inquiries,

in

writing,

to:

IBM

Director

of

Licensing

IBM

Corporation

North

Castle

Drive

Armonk,

NY

10504-1785

U.S.A.

For

license

inquiries

regarding

double-byte

(DBCS)

information,

contact

the

IBM

Intellectual

Property

Department

in

your

country

or

send

inquiries,

in

writing,

to:

IBM

World

Trade

Asia

Corporation

Licensing

2-31

Roppongi

3-chome,

Minato-ku

Tokyo

106,

Japan

The

following

paragraph

does

not

apply

to

the

United

Kingdom

or

any

other

country

where

such

provisions

are

inconsistent

with

local

law:

INTERNATIONAL

BUSINESS

MACHINES

CORPORATION

PROVIDES

THIS

PUBLICATION

″AS

IS″

WITHOUT

WARRANTY

OF

ANY

KIND,

EITHER

EXPRESS

OR

IMPLIED,

INCLUDING,

BUT

NOT

LIMITED

TO,

THE

IMPLIED

WARRANTIES

OF

NON-INFRINGEMENT,

MERCHANTABILITY

OR

FITNESS

FOR

A

PARTICULAR

PURPOSE.

Some

states

do

not

allow

disclaimer

of

express

or

implied

warranties

in

certain

transactions,

therefore,

this

statement

may

not

apply

to

you.

This

information

could

include

technical

inaccuracies

or

typographical

errors.

Changes

are

periodically

made

to

the

information

herein;

these

changes

will

be

incorporated

in

new

editions

of

the

publication.

IBM

may

make

improvements

and/or

changes

in

the

product(s)

and/or

the

program(s)

described

in

this

publication

at

any

time

without

notice.

Any

references

in

this

information

to

non-IBM

Web

sites

are

provided

for

convenience

only

and

do

not

in

any

manner

serve

as

an

endorsement

of

those

Web

sites.

The

materials

at

those

Web

sites

are

not

part

of

the

materials

for

this

IBM

product

and

use

of

those

Web

sites

is

at

your

own

risk.

IBM

may

use

or

distribute

any

of

the

information

you

supply

in

any

way

it

believes

appropriate

without

incurring

any

obligation

to

you.

©

Copyright

IBM

Corp.

1998,

2004

183

Licensees

of

this

program

who

wish

to

have

information

about

it

for

the

purpose

of

enabling:

(i)

the

exchange

of

information

between

independently

created

programs

and

other

programs

(including

this

one)

and

(ii)

the

mutual

use

of

the

information

which

has

been

exchanged,

should

contact:

Lab

Director

IBM

Canada

Ltd.

Laboratory

B3/KB7/8200/MKM

8200

Warden

Avenue

Markham,

Ontario,

Canada

L6G

1C7

Such

information

may

be

available,

subject

to

appropriate

terms

and

conditions,

including

in

some

cases,

payment

of

a

fee.

The

licensed

program

described

in

this

information

and

all

licensed

material

available

for

it

are

provided

by

IBM

under

terms

of

the

IBM

Customer

Agreement,

IBM

International

Program

License

Agreement,

or

any

equivalent

agreement

between

us.

Information

concerning

non-IBM

products

was

obtained

from

the

suppliers

of

those

products,

their

published

announcements

or

other

publicly

available

sources.

IBM

has

not

tested

those

products

and

cannot

confirm

the

accuracy

of

performance,

compatibility

or

any

other

claims

related

to

non-IBM

products.

Questions

on

the

capabilities

of

non-IBM

products

should

be

addressed

to

the

suppliers

of

those

products.

This

information

contains

examples

of

data

and

reports

used

in

daily

business

operations.

To

illustrate

them

as

completely

as

possible,

the

examples

may

include

the

names

of

individuals,

companies,

brands,

and

products.

All

of

these

names

are

fictitious

and

any

similarity

to

the

names

and

addresses

used

by

an

actual

business

enterprise

is

entirely

coincidental.

COPYRIGHT

LICENSE:

This

information

contains

sample

application

programs

in

source

language,

which

illustrates

programming

techniques

on

various

operating

platforms.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM,

for

the

purposes

of

developing,

using,

marketing

or

distributing

application

programs

conforming

to

the

application

programming

interface

for

the

operating

platform

for

which

the

sample

programs

are

written.

These

examples

have

not

been

thoroughly

tested

under

all

conditions.

IBM,

therefore,

cannot

guarantee

or

imply

reliability,

serviceability,

or

function

of

these

programs.

You

may

copy,

modify,

and

distribute

these

sample

programs

in

any

form

without

payment

to

IBM

for

the

purposes

of

developing,

using,

marketing,

or

distributing

application

programs

conforming

to

IBM’s

application

programming

interfaces.

Each

copy

or

any

portion

of

these

sample

programs

or

any

derivative

work,

must

include

a

copyright

notice

as

follows:

©

(your

company

name)

(year).

Portions

of

this

code

are

derived

from

IBM

Corp.

Sample

Programs.

©

Copyright

IBM

Corp.

1998,

2004.

All

rights

reserved.

If

you

are

viewing

this

information

softcopy,

the

photographs

and

color

illustrations

may

not

appear.

184

C

Language

Reference

Programming

Interface

Information

Programming

interface

information

is

intended

to

help

you

create

application

software

using

this

program.

General-use

programming

interfaces

allow

the

customer

to

write

application

software

that

obtains

the

services

of

this

program’s

tools.

However,

this

information

may

also

contain

diagnosis,

modification,

and

tuning

information.

Diagnosis,

modification,

and

tuning

information

is

provided

to

help

you

debug

your

application

software.

Warning:

Do

not

use

this

diagnosis,

modification,

and

tuning

information

as

a

programming

interface

because

it

is

subject

to

change.

Trademarks

and

Service

Marks

The

following

terms

are

trademarks

of

International

Business

Machines

Corporation

in

the

United

States,

or

other

countries,

or

both:

AIX

Eserver

IBM

OS/390

POWER

PowerPC

pSeries

S/390

VisualAge

z/OS

UNIX

is

a

registered

trademark

of

The

Open

Group

in

the

United

States

and

other

countries.

Linux®

is

a

trademark

of

Linus

Torvalds

in

the

United

States,

other

countries,

or

both.

Linux

is

a

trademark

of

Linus

Torvalds

in

the

United

States,

other

countries,

or

both.

Other

company,

product,

and

service

names,

may

be

trademarks

or

service

marks

of

others.

Industry

Standards

The

following

standards

are

supported:

v

The

C

language

is

consistent

with

the

International

Standard

C

(ANSI/ISO-IEC

9899–1990

[1992]).

This

standard

has

officially

replaced

American

National

Standard

for

Information

Systems-Programming

Language

C

(X3.159–1989)

and

is

technically

equivalent

to

the

ANSI

C

standard.

The

compiler

supports

the

changes

adopted

into

the

C

Standard

by

ISO/IEC

9899:1990/Amendment

1:1994.

v

The

C

language

is

consistent

with

the

International

Standard

for

Information

Systems-Programming

Language

C

(ISO/IEC

9899–1999

(E)).

Notices

185

186

C

Language

Reference

Index

Special

characters
__align

15,

28

__cdecl

136

__func__

14

__inline__

15

__VA_ARGS__

161,

164

_Complex_I

181

_Pragma

176

-

(subtraction

operator)

103

-

(unary

minus

operator)

95

--

(decrement

operator)

95

->

(arrow

operator)

93

,

(comma

operator)

112

!

(logical

negation

operator)

96

!=

(not

equal

to

operator)

105

?

:

(conditional

operators)

109

/

(division

operator)

102

/=

(compound

assignment

operator)

111

.

(dot

operator)

93

$

9,

14

*

(indirection

operator)

97

*

(multiplication

operator)

102

*=

(compound

assignment

operator)

111

\

continuation

character

22,

160

\

escape

character

9

[

]

(array

subscript

operator)

92

%

(remainder)

102

>

(greater

than

operator)

104

>>

(right-shift

operator)

103

>>=

(compound

assignment

operator)

111

>=

(greater

than

or

equal

to

operator)

104

<

(less

than

operator)

104

<<

(left-shift

operator)

103

<<=

(compound

assignment

operator)

111

<=

(less

than

or

equal

to

operator)

104

|

(bitwise

inclusive

OR

operator)

107

||

(logical

OR

operator)

108

&

(address

operator)

96

&

(bitwise

AND

operator)

106

&&

(label

value

operator)

100,

142

&&

(logical

AND

operator)

107

&=

(compound

assignment

operator)

111

#

preprocessor

directive

character

160

#

preprocessor

operator

165

##

(macro

concatenation)

166

+

(addition

operator)

102

+

(unary

plus

operator)

95

++

(increment

operator)

94

+=

(compound

assignment

operator)

111

=

(simple

assignment

operator)

111

==

(equal

to

operator)

105

^

(bitwise

exclusive

OR

operator)

106

^=

(compound

assignment

operator)

111

~

(bitwise

negation

operator)

96

A
addition

operator

(+)

102

address

operator

(&)

71,

96

GNU

C

extension

142

aggregate

types

35

initialization

48

alignment

26,

27

bit

fields

51,

52

structure

members

47

structures

26,

50

structures

and

unions

28

unions

50

alignof

operator

15,

97

AND

operator,

bitwise

(&)

106

AND

operator,

logical

(&&)

107

argc

(argument

count)

132

example

133

arguments
macro

161

main

function

132

passing

121,

133

passing

by

reference

135

passing

by

value

134

trailing

161,

164

argv

(argument

vector)

132

example

133

arithmetic

conversions

61,

119

arithmetic

types

40

type

compatibility

40

arrays
array-to-pointer

conversions

118

as

function

parameter

33,

73,

74

declaration

33,

74

description

73

flexible

array

member

45,

47

initialization

78

initializing

76

multidimensional

75

subscripting

operator

92

type

compatibility

73

variable

length

36,

75

zero-extent

45,

47

ASCII

character

codes

9

asm

15,

64

assignment

operator

(=)
compound

111

pointers

69

simple

111

associativity

of

operators

83

auto

storage

class

specifier

30

B
binary

expressions

and

operators

101

bit

fields

50

as

structure

member

46

type

name

99

bitwise

negation

operator

(~)

96

block

statement

143

block

visibility

2

boolean
conversions

116

literals

16

variables

41

brackets
bracketed

form

78

break

statement

153

C
case

label

146

cast

expressions

100

complex

to

real

61

union

type

100

char

type

specifier

41

character
data

types

41

literals

21

multibyte

11,

23

character

set
extended

11

source

8

class

members
access

operators

93

classes
class

objects

29

Classic

C

v

comma

112

in

enumerator

list

57

comments

12

compatible

types
across

source

files

40

arithmetic

types

40

arrays

73

in

conditional

expressions

109

complex

type

60,

94

composite

types

39

across

source

files

40

compound
assignment

111

literal

16,

23

statement

143

types

44

computed

goto

100,

142,

157

concatenation
macros

166

multibyte

characters

23

u-literals,

U-literals

11

conditional

compilation

directives

170

elif

preprocessor

directive

171

else

preprocessor

directive

173

endif

preprocessor

directive

173

examples

173

if

preprocessor

directive

171

ifdef

preprocessor

directive

172

ifndef

preprocessor

directive

172

conditional

expression

(?

:)

109

const

62

function

attribute

124

object

86

placement

in

type

name

36

©

Copyright

IBM

Corp.

1998,

2004

187

const

(continued)
qualifier

61

vs.

#define

160

constant

expressions

57,

88

continuation

character

22,

160

continue

statement

153

conversions
argument

expressions

133

arithmetic

119

array-to-pointer

118

boolean

116

cast

100

floating-point

117

function

arguments

118

function-to-pointer

118

integral

116

lvalue-to-rvalue

86,

116

pointer

117

standard

116

void

pointer

118

cv-qualifier

46,

61,

67

syntax

61

D
DATE

macro

169

decimal

integer

literals

17

declarations
description

25

syntax

25,

36

unsubscripted

arrays

75

declarative

region

1

declarators
description

67

decrement

operator

(−−)

95

default
clause

146,

147

label

147

define

preprocessor

directive

160

defined

unary

operator

172

definitions
description

25

macro

160

tentative

29

dereferencing

operator

97

derivation
array

type

73

designated

initializer
aggregate

types

48,

78

union

54

designator

48,

78

designation

48,

78

designator

list

48,

78

union

54

digraph

15

division

operator

(/)

102

do

statement

150

dollar

sign

9,

14

dot

operator

93

double

type

specifier

42

E
EBCDIC

character

codes

9

elif

preprocessor

directive

171

ellipsis
in

function

declaration

122

in

function

definition

130

in

macro

argument

list

162

else
preprocessor

directive

173

statement

144

endif

preprocessor

directive

173

entry

point
program

132

enum
keyword

57

enumerations

57

compatibility

40,

57

declaration

57

trailing

comma

57

enumerator

57

equal

to

operator

(==)

105

error

preprocessor

directive

167

escape

character

\

9

escape

sequence

9

alarm

\a

9

backslash

\\

9

backspace

\b

9

carriage

return

\r

9

double

quotation

mark

\″

9

form

feed

\f

9

horizontal

tab

\t

9

new-line

\n

9

question

mark

\?

9

single

quotation

mark

\’

9

vertical

tab

\v

9

exclusive

OR

operator,

bitwise

(^)

106

explicit
function

specifier

81

type

conversions

100

exponent

19

expressions
assignment

111

binary

101

cast

100

comma

112

conditional

109

description

83

full

83

integer

constant

88

parenthesized

89

primary

87

statement

143

unary

94

extern

inline
keyword

31,

138

extern

storage

class

specifier

5,

31,

137

implicit

declaration

91

with

function

pointers

137

with

variable

length

arrays

75

F
file

inclusion

168,

169

FILE

macro

169

file

scope

data

declarations
unsubscripted

arrays

75

flexible

array

member

47

float

type

specifier

42

floating

types

41,

61

floating-point
constant

19

conversion

117

literal

18

promotion

115

for

statement

151

function

attributes

123

function

designator

86

function-like

macro

161

functions

121

arguments

91,

121,

122

conversions

118

block

121

body

121

calling

133

calls

90

declaration

121

examples

127

definition

121,

128

declarator

128

examples

131

return

type

128

scope

128

storage

class

specifier

128

type

specifiers

128

function

call

operator

121

function-to-pointer

conversions

118

inline

31,

137,

138

library

functions

121

main

132

name

121,

128

diagnostic

14

parameters

66,

91,

122,

133

pointers

to

136

predefined

identifier

14

prototype

121,

122

return

statements

155

return

type

121,

128,

136

return

value

121,

136

specifiable

attributes

123

specifiers

81,

137

type

name

36

fundamental

type

40

G
global

variable

3,

5

uninitialized

31

goto

statement

156

computed

goto

157

restrictions

156

greater

than

operator

(>)

104

greater

than

or

equal

to

operator

(>=)

104

H
hexadecimal

floating

constants

19

hexadecimal

integer

literals

17

I
identifiers

13,

87

case

sensitivity

14

labels

141

188

C

Language

Reference

identifiers

(continued)
linkage

5

name

space

3

predefined

14

reserved

14,

15

special

characters

9,

14

if
preprocessor

directive

171

statement

144

ifdef

preprocessor

directive

172

ifndef

preprocessor

directive

172

imaginary

type

60

imaginary

unit

60

implementation

dependency
allocation

of

floating-point

types

42

allocation

of

integral

types

43

implicit

conversion

115

boolean

116

lvalue

86

types

115

implicit

int

132

include

preprocessor

directive

168

include_next

preprocessor

directive

169

inclusive

OR

operator,

bitwise

(|)

107

incomplete

type

66,

73

as

structure

member

45,

46,

47

increment

operator

(++)

94

indentation

of

code

160

indirection

operator

(*)

71,

97

information

hiding

1,

2

initialization
aggregate

types

48

auto

object

30

extern

object

31

register

object

32

static

object

33

union

member

54

initializer

lists

68

initializers

68

aggregate

types

48,

78

unions

54

inline
function

specifier

81,

138

functions

137

keyword

15,

31

integer
constant

expressions

57,

88

conversion

116

conversions

116

data

types

43

implicit

int

128

literals

16

promotion

115

K
K&R

C

v

keywords

15

language

extension

15

underscore

characters

15

L
label

as

values

142

implicit

declaration

3

label

(continued)
in

switch

statement

146

locally

declared

142

statement

141

language

extension

vi,

15

C
non-orthogonal

179

orthogonal

177

C99

177

GNU

C

vi,

177

left-shift

operator

(<<)

103

less

than

operator

(<)

104

less

than

or

equal

to

operator

(<=)

104

LINE

macro

169

line

preprocessor

directive

174

linkage

1,

4

auto

storage

class

specifier

31

const

cv-qualifier

62

extern

storage

class

specifier

32

external

5,

91

in

function

definition

128

inline

functions

137

internal

4,

33

none

5

register

storage

class

specifier

33

static

storage

class

specifier

34

weak

symbols

27

with

function

pointers

137

literals

16

boolean

16

character

21

compound

16,

23

floating-point

18

integer

16

data

types

16

decimal

17

hexadecimal

17

octal

18

string

22

Unicode

10

logical

operators
!

(logical

negation)

96

||

(logical

OR)

108

&&

(logical

AND)

107

long

double

type

specifier

42

long

long

type

specifier

40,

43

long

type

specifier

43

lvalues

61,

86,

87

casting

100

conversions

86,

116

M
macro

definition

160

typeof

operator

100

function-like

161

invocation

161

object-like

161

variable

argument

161,

164

main

function

132

arguments

132

example

133

members
class

member

access

operators

93

modifiable

lvalue

86,

111

modulo

operator

(%)

102

multibyte

character

11

concatenation

23

multicharacter

literal

21

multidimensional

arrays

75

multiplication

operator

(*)

102

N
name

space
context

4

of

identifiers

3

names
conflicts

3

resolution

2

narrow

character

literal

21

non-orthogonal

language

extensions
C

179

not

equal

to

operator

(!=)

105

null
character

\0

22

pointer

70

pointer

constants

118

preprocessor

directive

175

statement

157

number

sign

(#)
preprocessor

directive

character

160

preprocessor

operator

165

O
object-like

macro

161

objects

86

description

29

lifetime

1

restrict-qualified

pointer

63

octal

integer

literals

18

one’s

complement

operator

(~)

96

operators

7

-

(subtraction)

103

--

(decrement)

95

->

(arrow)

93

,

(comma)

112

!

(logical

negation)

96

!=

(not

equal

to)

105

?

:

(conditional)

109

/

(division)

102

.

(dot)

93

()

(function

call)

90,

121

*

(indirection)

97

*

(multiplication)

102

−

(unary

minus)

95

[]

(array

subscripting)

92

%

(remainder)

102

>

(greater

than)

104

>>

(right-

shift)

103

>=

(greater

than

or

equal

to)

104

<

(less

than)

104

<<

(left-

shift)

103

<=

(less

than

or

equal

to)

104

|

(bitwise

inclusive

OR)

107

||

(logical

OR)

108

&

(address)

96

&

(bitwise

AND)

106

&&

(logical

AND)

107

+

(addition)

102

++

(increment)

94

Index

189

operators

(continued)
=

(simple

assignment)

111

==

(equal

to)

105

^

(bitwise

exclusive

OR)

106

alternative

representations

8,

15

assignment

111

associativity

83

binary

101

bitwise

negation

operator

(~)

96

compound

assignment

111

defined

172

equality

105

expressions

90

operators

90

precedence

83

examples

85

type

names

36

preprocessor
#

165

##

166

pragma

176

relational

104

sizeof

98

typeof

99

unary

94

unary

plus

operator

(+)

95

OR

operator,

logical

(||)

108

orthogonal

language

extensions
C

177

P
packed

structure

member

50

variable

attribute

27

parenthesized

expressions

36,

89

pass

by

reference

135

pass

by

value

134

pointers
compatible

69

conversions

117

cv-qualified

69

description

69

generic

118

null

70

pointer

arithmetic

71

restrict-qualified

63

to

functions

136

type-qualified

69

void*

117

postfix
++

and

--

94,

95

expression

90

operator

90

pound

sign

(#)
preprocessor

directive

character

160

preprocessor

operator

165

pragma

operator

94,

176

pragmas
_Pragma

176

preprocessor

directive

175

standard

176

precedence

of

operators

83

predefined

identifier

14

predefined

macros
__IBMC__

170

DATE

169

predefined

macros

(continued)
FILE

169

LINE

169

STDC

169

STDC_HOSTED

170

STDC_VERSION

170

TIME

170

prefix
++

and

--

94,

95

hexadecimal

floating

constants

19

hexadecimal

integer

literals

17

octal

integer

literals

18

preprocessor

directives

159

conditional

compilation

170

preprocessing

overview

159

special

character

160

warning

167

preprocessor

operator
_Pragma

176

#

165

##

166

primary

expressions

87

promotions
function

argument

values

133

integral

and

floating-point

115

prototype

122

punctuators

7

alternative

representations

8,

15

Q
qualifiers

const

61

restrict

63

volatile

61,

63

R
register

storage

class

specifier

32

remainder

operator

(%)

102

restrict

63

return

statement

136,

155

value

155

return

type
size_t

98

right-shift

operator

(>>)

103

rvalues

86

S
scalar

types

35,

69

scope

1

description

1

enclosing

and

nested

2

function

3

function

prototype

3

global

3

identifiers

3

local

(block)

2

macro

names

165

sequence

point

83,

113

shift

operators

<<

and

>>

103

short

type

specifier

43

side

effect

63,

83

signed

type

specifiers
char

41

signed

type

specifiers

(continued)
int

43

long

43

long

long

43

simple

type

specifiers

40

char

41

wchar_t

41

size_t

98

sizeof

operator

98

with

variable

length

arrays

76

space

character

160

special

characters

9

specifiers
inline

137

storage

class

29

splice

preprocessor

directive

##

166

Standard

C

v

standard

type

conversions

115,

116

statements

141

block

143

break

153

continue

153

do

150

expressions

143

for

151

goto

156

if

144

labels

141

null

157

return

136,

155

selection

144,

146

switch

146

while

149

static
in

array

declaration

33,

74

storage

class

specifier

33

linkage

34

with

variable

length

arrays

75

static

storage

class

specifier

5

STDC

macro

169

STDC_HOSTED

macro

170

STDC_VERSION

macro

170

storage

class

specifiers

29,

128

auto

30

extern

31

register

32

static

33

storage

duration

1

auto

storage

class

specifier

31

extern

storage

class

specifier

32

register

storage

class

specifier

33

static

33

string
literal

22

terminator

22

stringize

preprocessor

directive

#

165

struct

type

specifier

46

structures

45

alignment

28,

50

compatibility

40,

46,

50

embedded

pragma

directives

50

flexible

array

member

45,

47

identifier

(tag)

46

initialization

48

members

46

alignment

47

incomplete

types

47

190

C

Language

Reference

structures

(continued)
members

(continued)
layout

in

memory

48

packed

50

padding

47

zero-extent

array

45

name

spaces

within

4

nesting

50

packed

47

type

attributes

36

unnamed

members

49

subscript

declarator
in

arrays

74

subscripting

operator

73,

92

in

type

name

36

subtraction

operator

(−)

103

suffix
floating-point

literals

18

hexadecimal

floating

constants

19

integer

literal

constants

16

switch

statement

146

T
tags

enumeration

57

structure

46

union

54

tentative

definition

29

TIME

macro

170

tokens

7,

159

alternative

representations

for

operators

and

punctuators

8

translation

unit

1

trigraph

sequences

11

truncation
integer

division

102

type

attributes

36

type

name

36

typeof

operator

99

type

qualifiers
const

61,

62

const

and

volatile

67

in

structure

member

definition

46

restrict

63

volatile

61

type

specifier

35

(long)

double

42

char

41

complex

60

enumeration

57

float

42

imaginary

60

in

function

definition

128

int

43

long

43

long

long

43

overriding

27

short

43

simple

40

unsigned

43

wchar_t

41,

43

typedef

specifier

34

and

type

compatibility

39

with

variable

length

arrays

76

typeof

operator

15,

99

types
aggregates

35

compatible

39

composite

39

compound

44

conversions

100

enumerated

57

floating

61

scalar

35

variably

modified

74

U
u-literal,

U-literal

10

unary

expressions

94

unary

operators

94

label

value

100

minus

(−)

95

plus

(+)

95

undef

preprocessor

directive

165

underscore

character

14,

15

Unicode

10

unions

54

alignment

50

cast

to

union

type

100

compatibility

40,

50,

54

designated

initializer

48

embedded

pragma

directives

50

initialization

54

nesting

50

specifier

54

type

attributes

36

unnamed

members

49

universal

character

name

10,

14,

21,

22

unsigned

type

specifiers
char

41

int

43

long

43

long

long

43

short

43

unsubscripted

arrays
description

73,

75

UTF-16,

UTF-32

10

V
variable

attributes

26

variable

length

array

66,

75,

156

as

function

parameter

76,

133

as

structure

member

46

as

union

members

54

sizeof

89,

98

type

name

36

variably

modified

types

46,

54,

74,

76,

147

size

evaluation

133

virtual
function

specifier

81

visibility

1

block

2

void

44

argument

type

130

in

function

definition

128,

130

pointer

117,

118

volatile
qualifier

61,

63

W
warning

preprocessor

directive

167

wchar_t

type

specifier

21,

41,

43

weak

symbol

27

while

statement

149

white

space

7,

12,

159,

160,

165

wide

characters
literals

21

wide

string

literal

23

Z
zero-extent

array

47

Index

191

192

C

Language

Reference

���

Program

Number:

5724-I10

SC09-7895-00

	Contents
	About This Reference
	The IBM Language Extensions
	Features Related to GNU C

	Highlighting Conventions
	How to Read the Syntax Diagrams

	Chapter 1. Scope and Linkage
	Scope
	Block Scope
	Function Scope
	Function Prototype Scope
	Global Scope
	Name Spaces of Identifiers

	Program Linkage
	Internal Linkage
	External Linkage
	No Linkage

	Chapter 2. Lexical Elements
	Tokens
	Punctuators
	Alternative Tokens

	Source Program Character Set
	Escape Sequences
	The Unicode Standard
	Trigraph Sequences
	Multibyte Characters

	Comments
	Identifiers
	Reserved Identifiers
	Case Sensitivity and Special Characters in Identifiers
	Predefined Identifiers
	Keywords
	Keywords for Language Extensions
	Alternative Representations of Operators and Punctuators

	Literals
	Boolean Literals
	Integer Literals
	Decimal Integer Literals
	Hexadecimal Integer Literals
	Octal Integer Literals

	Floating-Point Literals
	Hexadecimal Floating Constants

	Complex Literals
	Character Literals
	String Literals
	Compound Literals

	Chapter 3. Declarations
	Declaration Overview
	Variable Attributes
	The aligned Variable Attribute
	The mode Variable Attribute
	The packed Variable Attribute
	The weak Variable Attribute

	The __align Specifier
	Tentative Definitions

	Objects
	Storage Class Specifiers
	auto Storage Class Specifier
	extern Storage Class Specifier
	register Storage Class Specifier
	static Storage Class Specifier
	typedef

	Type Specifiers
	Type Names
	Type Attributes
	Type Attribute aligned
	Type Attribute packed
	Type Attribute transparent_union

	Compatible Types
	Simple Type Specifiers
	Boolean Variables
	char and wchar_t Type Specifiers
	Floating-Point Variables
	Integer Variables
	void Type

	Compound Types
	Structures
	Unions
	Enumerations

	Complex Types

	Type Qualifiers
	The const Type Qualifier
	The volatile Type Qualifier
	The restrict Type Qualifier

	The asm Declaration
	Incomplete Types

	Chapter 4. Declarators
	Initializers
	Pointers
	Declaring Pointers
	Assigning Pointers
	Initializing Pointers
	Using Pointers
	Pointer Arithmetic

	Arrays
	Declaring Arrays
	Variable Length Arrays

	Initializing Arrays
	Initializing Arrays Using Designated Initializers

	Function Specifiers

	Chapter 5. Expressions and Operators
	Operator Precedence and Associativity
	Lvalues and Rvalues
	Primary Expressions
	Integer Constant Expressions
	Parenthesized Expressions ()

	Postfix Expressions
	Function Call Operator ()
	Array Subscripting Operator []
	Dot Operator .
	Arrow Operator −>

	Unary Expressions
	Increment ++
	Decrement −−
	Unary Plus +
	Unary Minus −
	Logical Negation !
	Bitwise Negation ~
	Address &
	Indirection *
	alignof Operator
	sizeof Operator
	typeof Operator
	Label Value Operator &&

	Cast Expressions
	Cast to a Union Type

	Binary Expressions
	Multiplication *
	Division /
	Remainder %
	Addition +
	Subtraction −
	Bitwise Left and Right Shift << >>
	Relational < > <= >=
	Equality == !=
	Bitwise AND &
	Bitwise Exclusive OR ^
	Bitwise Inclusive OR |
	Logical AND &&
	Logical OR ||

	Conditional Expressions
	Type of Conditional C Expressions
	Examples of Conditional Expressions

	Assignment Expressions
	Simple Assignment =
	Compound Assignment

	Comma Expressions

	Chapter 6. Implicit Type Conversions
	Integral and Floating-Point Promotions
	Standard Type Conversions
	Lvalue-to-Rvalue Conversions
	Boolean Conversions
	Integral Conversions
	Floating-Point Conversions
	Pointer Conversions
	Function Argument Conversions
	Other Conversions

	Arithmetic Conversions

	Chapter 7. Functions
	Function Declarations
	Function Attributes
	The alias Function Attribute
	The always_inline Function Attribute
	The const Function Attribute
	The format Function Attribute
	The format_arg Function Attribute
	The noinline Function Attribute
	The noreturn Function Attribute
	The pure Function Attribute
	The weak Function Attribute

	Examples of Function Declarations

	Function Definitions
	Ellipsis and void
	Examples of Function Definitions

	The main() Function
	Arguments to main
	Example of Arguments to main

	Calling Functions and Passing Arguments
	Passing Arguments by Value
	Passing Arguments by Reference

	Function Return Values
	Pointers to Functions
	Inline Functions
	Nested Functions

	Chapter 8. Statements
	Labels
	Locally Declared Labels
	Labels as Values

	Expression Statements
	Block Statement
	if Statement
	switch Statement
	while Statement
	do Statement
	for Statement
	break Statement
	continue Statement
	return Statement
	Value of a return Expression and Function Value

	goto Statement
	Computed goto

	Null Statement

	Chapter 9. Preprocessor Directives
	Preprocessor Overview
	Preprocessor Directive Format
	Macro Definition and Expansion (#define)
	Object-Like Macros
	Function-Like Macros
	Variadic Macro Extensions

	Scope of Macro Names (#undef)
	# Operator
	Macro Concatenation with the ## Operator
	Preprocessor Error Directive (#error)
	Preprocessor Warning Directive (#warning)

	File Inclusion (#include)
	Specialized File Inclusion (#include_next)
	ISO Standard Predefined Macro Names
	Conditional Compilation Directives
	#if, #elif
	#ifdef
	#ifndef
	#else
	#endif

	Line Control (#line)
	Null Directive (#)
	Pragma Directives (#pragma)
	Standard Pragmas
	The _Pragma Operator

	Appendix A. The IBM C Language Extensions
	Orthogonal Extensions
	Existing IBM C Extensions with Individual Option Controls
	IBM C Extensions: C99 Features as Extensions to C89
	IBM C Extensions Related to GNU C

	Non-Orthogonal Extensions
	Existing IBM C Extensions with Individual Option Controls
	IBM C Extensions: C99 Features as Extensions to C89
	IBM C Extensions Related to GNU C

	Appendix B. Predefined Macros Related to Language Features
	Notices
	Programming Interface Information
	Trademarks and Service Marks
	Industry Standards

	Index

