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N
otes and C

om
m

ents: 
L

ines 3-4: W
e need <

s
t
r
i
n
g
.
h
> for s

t
r
l
e
n

 and s
t
r
c
p
y

, and
<
s
t
d
l
i
b
.
h
> for  m

a
l
l
o
c

.
L

ines 
5-6: 

T
hese 

tw
o 

function 
prototypes 

are 
essentially

identical, since as param
eters,  c

h
a
r
 
[
]  and  c

h
a
r
 
*

  are
the sam

e.  In a prototype, w
e don’t need the nam

e of the
param

eter, though w
e could have w

ritten  c
h
a
r
 
a
[
]  and

c
h
a
r
 
*
a.

L
ine 10: T

his lays out a c
h
a
r array of size 5, w

ith uninitialized
(garbage values) stored in it.

L
ines 11-12: If w

e initialize a string, either w
ith "

?
?
?
" or w

ith
{
’
?
’
,
 
’
?
’
,
 
’
?
’
,
 
’
\
0
’
}
; then C

 w
ill decide how

 long to
m

ake the array.  N
otice that in the first w

ay, C
 puts in the

’
\
0
’  char, w

hile in the second w
ay you have to 

do 
it

yourself.
L

ine 14: T
he variables  p

,  q, and  r  are declared to be of type
"pointer to c

h
a
r

", or "address of c
h
a
r

".  T
his is very sim

ilar
to the type of variables  s

,  t, and  u
 , except that these latter

are constant pointers to c
h
a
r

.  T
hus  p

 
=
 
s  is legal, since  p

is not a constant, but  s
 
=
 
p  is illegal, since  s  cannot be

changed 
(cannot 

be 
on 

the 
left 

side 
of 

an 
assignm

ent
statem

ent).
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L
ine 16: T

his is another (hard) w
ay to initialize 

a 
character

string. N
ote that it also is a true string, since I put the  ’

\
0
’

on at the end.
L

ine 17:  H
ere I show

 that all three strings print out fine w
ith a

%
s  form

at.  %
s  expects to see a variable of type  c

h
a
r
 
*

(pointer to c
h
a
r

) later in the  p
r
i
n
t
f

  statem
ent.

L
ine 19:  p

 
=
 
s
;  just puts the address of  s  into  p

.  N
ow

  p
w

ill behave in m
any respects like  s

, except that I can change
p

  again if I like.  T
he other  q

 
=
 
&
s
[
0
]
;  is m

uch trickier,
but does the sam

e thing.  s
[
0
]

 is the first elem
ent of the

array  s  (the first character), and  &
s
[
0
]  is the address of

that first char, so that &
s
[
0
]  is just a fancy w

ay to w
rite  s, a

pointer to the start of the character string.
L

ine 20:H
ere I’m

 show
ing that %

s w
orks fine w

ith p
 and q

, w
hen

they’ve been initialized correctly, as w
ell as s, t

, and  u
.

L
ines 22-29: T

hese call the tw
o functions in various w

ays to
print the character strings.  A

s you see, any com
bination of

c
h
a
r
 
[
] or  c

h
a
r
 
*

, passed to either of the tw
o functions,

w
orks fine.

L
ines 30-42: T

hese show
 5 equivalent w

ays to print the four
characters in the various strings.  E

ach is printed w
ith a %

c

form
at, so the variable is supposed to be just of type char.

L
ines 

31-32: 
T

his 
just 

prints 
the 

four 
array 

elem
ents 

in 
a

straightforw
ard w

ay.
L

ines 33-34: T
his show

s that even for som
ething like  p

  that w
as

declared of type  
c
h
a
r
 
*

, the 
[
] subscript notation still

w
orks (of course assum

ing that  p
  has been initialized to the

address of an actual character string).
L

ines 35-38: T
his show

s the "pointer arithm
etic".  G

iven 
an

address like  s
  or  p, w

e can w
rite  s

+
1

  or  p
+
1

  for the next
item

 pointed to.  (s  or  p
  is the address of the zeroth item

 in
the array, w

hile s
+
1

  or  p
+
1

  points to the first item
, and

s
+
2

  or  p
+
2

  is the address of the second item
, and so forth.

G
iven the address of som

ething, in C
, the *

 operator fetches
w

hat is at that address (w
e say "dereference").  T

hus  s
[
0
]

is the sam
e as  *

s
, and  s

[
1
]
 is the sam

e as  *
(
s
+
1
)

,  s
[
2
]

is the sam
e as  *

(
s
+
2
)

, and so forth.  A
lso the sam

e is true
for  p

.  In fact, C
 just translates any expression like  p

[
2
]

into the equivalent form
  *
(
p
+
2
).  N

otice that  *
p
+
2

  w
hich

is the sam
e as  (

*
p
)
+
2

  is som
ething com

pletely different.
T

his last w
ill add 2

 to the value of  *
p.

L
ines 

39-42: 
T

his 
is 

sim
ilar, 

except 
that 

w
e 

are 
actually

increm
enting the value stored in  p.  H

ere w
e m

ust have a
variable like  p that can be changed, rather than  s.  W

hen I
first w

rote this segm
ent, the w

hile loop w
as w

h
i
l
e
(
p
 
!
=

0
)  instead of w

h
i
l
e
(
*
p
 
!
=
 
0
)

, w
hich is correct.  (T

he
incorrect 

version 
produced 

a 
segm

entation 
error.) 

 
T

he
correct version lets  p

 be increm
ented until it points to the

null character  ’
\
0
’ at the end of the character array.  W

e
can also w

rite w
h
i
l
e
 
(
*
p
).  T

he incorrect version starts
w

ith an non-zero address stored in  p
  and just increm

ents it
indefinitely, so of course it w

ill never be zero.  N
otice that

this little segm
ent destroys the value of  p

, since w
hen it is

done,  p
 points to a null character, and the string is no longer

accessible 
through 

 
p

. 
 

If 
instead 

w
e 

w
rote 

a 
separate

function, w
ith  p

  passed by value as a param
eter, then this

w
ould w

ork fine.
L

ines 43-45: T
his is the m

ost sophisticated code here. 
 

T
he

declaration  c
h
a
r
 
*
r;  creates a location  r

  that is ready to
hold the address of a char (of the starting address of a string).
Initially,  r

  w
ill have useless garbage stored in it.  T

he
function  m

a
l
l
o
c

  allocates storage at run tim
e and returns

the address of this storage.  m
a
l
l
o
c
(
s
t
r
l
e
n
(
s
)
 
+
 
1
)
;

w
ill allocate room

 for 5 characters in this case, enough for the
non-null characters in  s, and one m

ore for the null.  T
he

address of this storage is stored in the variable  r
.  T

hen, the
s
t
r
c
p
y

 function copies the characters in  s  into the new
storage in  r

.  (T
he  ’

\
0
’

  at the end is copied also.) Finally,
r

  can be printed like any other string.  T
his m

ethod of using
m
a
l
l
o
c

  is the m
ost com

m
on and flexible w

ay to w
ork w

ith
strings in C

.


