CS 1723, Examples of Strings in C, Fri Sep 11 1998, Page 1

runner%cat -n string_test.text

~NooabhwNE

8
9

10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

runner % cat string_test.c
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>

void print_stringl(char []);
void print_string2(char *);
int main()
{
/[* three equival ent ways
to declare the string "Neal" */
char s[5];
char t[] = "Neal";
char u[] = {'N, "€, "a, I, "\0};
/* here is the address of a string: */
char *p; char *q; char *r;
s[0] ='N; s[1] ="¢e"; s[2] ="a;
s[3] ="1"; s[4] ="\0";
printf("Three strings: %, %, %\n", s, t, u);
p=s; q=8&s[0];
printf("Using pointer to char:%%\n", p, q);
/* passing as a paraneter, all print: "Neal" */
printf("Six Neals:");
print_stringl(s);
print_stringl(p);
print_stringl(q);
print_string2(s);
print_string2(p);
print_string2(q);
printf("\n");
/[* printing characters */
printf("Four characters (1): %%%%\n"
s[0], s[1], s[2], s[3]);
printf("Four characters (2):%%%%\n"
plo], pl1], p[2], p[3]);
printf("Four characters (3):%%%%\n"
*s, *(s+l), *(s+2), *(s+3));
printf("Four characters (4):%%%%\n"
P, *(ptl), *(pt+2), *(p+3));
printf("Four characters (5):");
while (*p) /* same as while (*p I'="\0") */
printf("%", *p++); [* same as *(p++) */
printf("\n");
r = (char *) malloc(strlen(s) + 1);
strepy(r, s);
printf("New string:%\n", r);
return O;
}

void print_stringl(char a[])
{

50 printf("%", a);

51 }

52 wvoid print_string2(char *a)
53 {

54 printf("%", a);

55 }

56 runner%cc -0 string test string test.c
57 runner%string_test

58 Three strings: Neal, Neal , Nea

59 Using pointer to char: Neal Nea

60 Si x Neal s: Neal Neal Neal Neal Neal Nea

61 Four characters (1): Nea

62 Four characters (2): Nea
63 Four characters (3):Nea
64 Four characters (4): Nea
65 Four characters (5): Nea

66 New string: Nea

runner %

Notes and Comments:

Lines 3-4: Weneed <stri ng. h> for strl en and st rcpy, and
<stdlib. h>for mal | oc.

Lines 5-6: These two function prototypes are essentially
identical, since as parameters, char [] and char * are
the same. In a prototype, we don't need the name of the
parameter, though we could have written char a[] and
char *a

Line 10: This lays out a char array of size 5, with uninitialized
(garbage values) stored init.

Lines 11-12: If we initialize a string, either with " ???" or with
{2, '?, 2?2, '\0}; then Cwill decide how long to
make the array. Notice that in the first way, C puts in the
'\ 0" char, while in the second way you have to do it
yourself.

Line 14: The variables p, g, and r are declared to be of type
"pointer to char ", or "address of char ". Thisis very similar
to thetype of variables s, t,and u , except that these latter
are constant pointerstochar . Thus p = s islegal, since p
isnot aconstant, but s = p isillega, since s cannot be
changed (cannot be on the left side of an assignment
statement).

CS 1723, Examples of Strings in C, Fri Sep 11 1998, Page 2

Line 16: This is another (hard) way to initialize a character
string. Note that it also is a true string, since | put the "\ 0’
on at the end.

Line 17: Here | show that all three strings print out fine with a
% format. % expectsto see avariable of type char *
(pointer tochar) later inthe pri ntf statement.

Linel1l9: p = s; just putsthe addressof s into p. Now p
will behave in many respectslike s, except that | can change
p againifllike. Theother q = &s[0]; ismuch trickier,
but does the same thing. s[0] is the first element of the
array s (thefirst character), and &s[0] isthe address of
that first char, so that &s[0] isjust afancy way to write s, a
pointer to the start of the character string.

Line 20:Here I’'m showing that % works fine with p and g, when
they’ve been initialized correctly, aswell ass, t , and u.

Lines 22-29: These call the two functions in various ways to
print the character strings. As you see, any combination of
char [] or char *, passed to either of the two functions,
works fine.

Lines 30-42: These show 5 equivalent ways to print the four
characters in the various strings. Each is printed with a %
format, so the variable is supposed to be just of type char.

Lines 31-32: This just prints the four array elements in a
straightforward way.

Lines 33-34: This showsthat even for something like p that was
declared of type char *, the [] subscript notation till
works (of course assuming that p has been initialized to the
address of an actual character string).

Lines 35-38: This shows the "pointer arithmetic*. Given an
addresslike s or p, wecanwrite s+1 or p+1 for the next
item pointed to. (s or p istheaddress of the zeroth item in
the array, whiles+1 or p+1 points to the first item, and
s+2 or p+2 istheaddress of the second item, and so forth.
Given the address of something, in C, the * operator fetches
what is at that address (we say "dereference’). Thus s[0]
isthesameas *s,and s[1] isthesameas *(s+1), s[2]

isthesame as *(s+2), and so forth. Also the same is true
for p. Infact, C just trandates any expression like p[2]
into the equivalent form *(p+2). Notice that *p+2 which
isthe same as (*p)+2 is something completely different.
Thislast will add 2 to the value of *p.

Lines 39-42: This is similar, except that we are actualy
incrementing the value stored in p. Here we must have a
variable like p that can be changed, rather than s. When |
first wrote this segment, the while loop was whil e(p !=
0) instead of while(*p !'= 0), which is correct. (The
incorrect version produced a segmentation error.) The
correct version lets p be incremented until it points to the
null character '\ 0’ at the end of the character array. We
can also write while (*p). The incorrect version starts
with an non-zero address stored in p and just increments it
indefinitely, so of course it will never be zero. Notice that
this little segment destroys the value of p, since when it is
done, p pointsto anull character, and the string is no longer
accessible through p. If instead we wrote a separate
function, with p passed by value as a parameter, then this
would work fine.

Lines 43-45: This is the most sophisticated code here. The
declaration char *r; creates alocation r that is ready to
hold the address of a char (of the starting address of a string).
Initially, r will have useless garbage stored in it. The
function nal | oc allocates storage at run time and returns
the address of this storage. mal l oc(strlen(s) + 1);
will allocate room for 5 charactersin this case, enough for the
non-null characters in s, and one more for the null. The
address of this storage is stored in the variable r. Then, the
st rcpy function copies the characters in s into the new
storagein r. (The '\ 0’ attheend is copied also.) Finaly,
r can be printed like any other string. This method of using
mal | oc isthe most common and flexible way to work with
stringsin C.

