
C
S

 1723, E
xam

p
les o

f S
trin

g
s in

 C
, F

ri S
ep

 11 1998, P
ag

e
1

r
u
n
n
e
r
%

c
a
t

-
n

s
t
r
i
n
g
_
t
e
s
t
.
t
e
x
t

1

r
u
n
n
e
r
%

c
a
t

s
t
r
i
n
g
_
t
e
s
t
.
c

2

#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

3

#
i
n
c
l
u
d
e

<
s
t
r
i
n
g
.
h
>

4

#
i
n
c
l
u
d
e

<
s
t
d
l
i
b
.
h
>

5

v
o
i
d

p
r
i
n
t
_
s
t
r
i
n
g
1
(
c
h
a
r

[
]
)
;

6

v
o
i
d

p
r
i
n
t
_
s
t
r
i
n
g
2
(
c
h
a
r

*
)
;

7

i
n
t

m
a
i
n
(
)

8

{

9

/
*

t
h
r
e
e

e
q
u
i
v
a
l
e
n
t

w
a
y
s

t
o

d
e
c
l
a
r
e

t
h
e

s
t
r
i
n
g

"
N
e
a
l
"

*
/

1
0

c
h
a
r

s
[
5
]
;

1
1

c
h
a
r

t
[
]

=

"
N
e
a
l
"
;

1
2

c
h
a
r

u
[
]

=

{
’
N
’
,

’
e
’
,

’
a
’
,

’
l
’
,

’
\
0
’
}
;

1
3

/
*

h
e
r
e

i
s

t
h
e

a
d
d
r
e
s
s

o
f

a

s
t
r
i
n
g
:

*
/

1
4

c
h
a
r

*
p
;

c
h
a
r

*
q
;

c
h
a
r

*
r
;

1
5

1
6

s
[
0
]

=

’
N
’
;

s
[
1
]

=

’
e
’
;

s
[
2
]

=

’
a
’
;

s
[
3
]

=

’
l
’
;

s
[
4
]

=

’
\
0
’
;

1
7

p
r
i
n
t
f
(
"
T
h
r
e
e

s
t
r
i
n
g
s
:
%
s
,
%
s
,
%
s
\
n
"
,

s
,

t
,

u
)
;

1
8

1
9

p

=

s
;

q

=

&
s
[
0
]
;

2
0

p
r
i
n
t
f
(
"
U
s
i
n
g

p
o
i
n
t
e
r

t
o

c
h
a
r
:
%
s
%
s
\
n
"
,

p
,

q
)
;

2
1

/
*

p
a
s
s
i
n
g

a
s

a

p
a
r
a
m
e
t
e
r
,

a
l
l

p
r
i
n
t
:

"
N
e
a
l
"

*
/

2
2

p
r
i
n
t
f
(
"
S
i
x

N
e
a
l
s
:
"
)
;

2
3

p
r
i
n
t
_
s
t
r
i
n
g
1
(
s
)
;

2
4

p
r
i
n
t
_
s
t
r
i
n
g
1
(
p
)
;

2
5

p
r
i
n
t
_
s
t
r
i
n
g
1
(
q
)
;

2
6

p
r
i
n
t
_
s
t
r
i
n
g
2
(
s
)
;

2
7

p
r
i
n
t
_
s
t
r
i
n
g
2
(
p
)
;

2
8

p
r
i
n
t
_
s
t
r
i
n
g
2
(
q
)
;

2
9

p
r
i
n
t
f
(
"
\
n
"
)
;

3
0

/
*

p
r
i
n
t
i
n
g

c
h
a
r
a
c
t
e
r
s

*
/

3
1

p
r
i
n
t
f
(
"
F
o
u
r

c
h
a
r
a
c
t
e
r
s

(
1
)
:
%
c
%
c
%
c
%
c
\
n
"
,

3
2

s
[
0
]
,

s
[
1
]
,

s
[
2
]
,

s
[
3
]
)
;

3
3

p
r
i
n
t
f
(
"
F
o
u
r

c
h
a
r
a
c
t
e
r
s

(
2
)
:
%
c
%
c
%
c
%
c
\
n
"
,

3
4

p
[
0
]
,

p
[
1
]
,

p
[
2
]
,

p
[
3
]
)
;

3
5

p
r
i
n
t
f
(
"
F
o
u
r

c
h
a
r
a
c
t
e
r
s

(
3
)
:
%
c
%
c
%
c
%
c
\
n
"
,

3
6

*
s
,

*
(
s
+
1
)
,

*
(
s
+
2
)
,

*
(
s
+
3
)
)
;

3
7

p
r
i
n
t
f
(
"
F
o
u
r

c
h
a
r
a
c
t
e
r
s

(
4
)
:
%
c
%
c
%
c
%
c
\
n
"
,

3
8

*
p
,

*
(
p
+
1
)
,

*
(
p
+
2
)
,

*
(
p
+
3
)
)
;

3
9

p
r
i
n
t
f
(
"
F
o
u
r

c
h
a
r
a
c
t
e
r
s

(
5
)
:
"
)
;

4
0

w
h
i
l
e

(
*
p
)

/
*

s
a
m
e

a
s

w
h
i
l
e

(
*
p

!
=

’
\
0
’
)

*
/

4
1

p
r
i
n
t
f
(
"
%
c
"
,

*
p
+
+
)
;

/
*

s
a
m
e

a
s

*
(
p
+
+
)

*
/

4
2

p
r
i
n
t
f
(
"
\
n
"
)
;

4
3

r

=

(
c
h
a
r

*
)

m
a
l
l
o
c
(
s
t
r
l
e
n
(
s
)

+

1
)
;

4
4

s
t
r
c
p
y
(
r
,

s
)
;

4
5

p
r
i
n
t
f
(
"
N
e
w

s
t
r
i
n
g
:
%
s
\
n
"
,

r
)
;

4
6

r
e
t
u
r
n

0
;

4
7

}

4
8

v
o
i
d

p
r
i
n
t
_
s
t
r
i
n
g
1
(
c
h
a
r

a
[
]
)

4
9

{

5
0

p
r
i
n
t
f
(
"
%
s
"
,

a
)
;

5
1

}

5
2

v
o
i
d

p
r
i
n
t
_
s
t
r
i
n
g
2
(
c
h
a
r

*
a
)

5
3

{

5
4

p
r
i
n
t
f
(
"
%
s
"
,

a
)
;

5
5

}

5
6

r
u
n
n
e
r
%

c
c

-
o

s
t
r
i
n
g
_
t
e
s
t

s
t
r
i
n
g
_
t
e
s
t
.
c

5
7

r
u
n
n
e
r
%

s
t
r
i
n
g
_
t
e
s
t

5
8

T
h
r
e
e

s
t
r
i
n
g
s
:
N
e
a
l
,
N
e
a
l
,
N
e
a
l

5
9

U
s
i
n
g

p
o
i
n
t
e
r

t
o

c
h
a
r
:
N
e
a
l
N
e
a
l

6
0

S
i
x

N
e
a
l
s
:
N
e
a
l
N
e
a
l
N
e
a
l
N
e
a
l
N
e
a
l
N
e
a
l

6
1

F
o
u
r

c
h
a
r
a
c
t
e
r
s

(
1
)
:
N
e
a
l

6
2

F
o
u
r

c
h
a
r
a
c
t
e
r
s

(
2
)
:
N
e
a
l

6
3

F
o
u
r

c
h
a
r
a
c
t
e
r
s

(
3
)
:
N
e
a
l

6
4

F
o
u
r

c
h
a
r
a
c
t
e
r
s

(
4
)
:
N
e
a
l

6
5

F
o
u
r

c
h
a
r
a
c
t
e
r
s

(
5
)
:
N
e
a
l

6
6

N
e
w

s
t
r
i
n
g
:
N
e
a
l

r
u
n
n
e
r
%

N
otes and C

om
m

ents:
L

ines 3-4: W
e need <

s
t
r
i
n
g
.
h
> for s

t
r
l
e
n

 and s
t
r
c
p
y

, and
<
s
t
d
l
i
b
.
h
> for m

a
l
l
o
c

.
L

ines
5-6:

T
hese

tw
o

function
prototypes

are
essentially

identical, since as param
eters, c

h
a
r

[
] and c

h
a
r

*

 are
the sam

e. In a prototype, w
e don’t need the nam

e of the
param

eter, though w
e could have w

ritten c
h
a
r

a
[
] and

c
h
a
r

*
a.

L
ine 10: T

his lays out a c
h
a
r array of size 5, w

ith uninitialized
(garbage values) stored in it.

L
ines 11-12: If w

e initialize a string, either w
ith "

?
?
?
" or w

ith
{
’
?
’
,

’
?
’
,

’
?
’
,

’
\
0
’
}
; then C

 w
ill decide how

 long to
m

ake the array. N
otice that in the first w

ay, C
 puts in the

’
\
0
’ char, w

hile in the second w
ay you have to

do
it

yourself.
L

ine 14: T
he variables p

, q, and r are declared to be of type
"pointer to c

h
a
r

", or "address of c
h
a
r

". T
his is very sim

ilar
to the type of variables s

, t, and u
 , except that these latter

are constant pointers to c
h
a
r

. T
hus p

=

s is legal, since p

is not a constant, but s

=

p is illegal, since s cannot be

changed
(cannot

be
on

the
left

side
of

an
assignm

ent
statem

ent).

C
S

 1723, E
xam

p
les o

f S
trin

g
s in

 C
, F

ri S
ep

 11 1998, P
ag

e
2

L
ine 16: T

his is another (hard) w
ay to initialize

a
character

string. N
ote that it also is a true string, since I put the ’

\
0
’

on at the end.
L

ine 17: H
ere I show

 that all three strings print out fine w
ith a

%
s form

at. %
s expects to see a variable of type c

h
a
r

*

(pointer to c
h
a
r

) later in the p
r
i
n
t
f

 statem
ent.

L
ine 19: p

=

s
; just puts the address of s into p

. N
ow

 p
w

ill behave in m
any respects like s

, except that I can change
p

 again if I like. T
he other q

=

&
s
[
0
]
; is m

uch trickier,
but does the sam

e thing. s
[
0
]

 is the first elem
ent of the

array s (the first character), and &
s
[
0
] is the address of

that first char, so that &
s
[
0
] is just a fancy w

ay to w
rite s, a

pointer to the start of the character string.
L

ine 20:H
ere I’m

 show
ing that %

s w
orks fine w

ith p
 and q

, w
hen

they’ve been initialized correctly, as w
ell as s, t

, and u
.

L
ines 22-29: T

hese call the tw
o functions in various w

ays to
print the character strings. A

s you see, any com
bination of

c
h
a
r

[
] or c

h
a
r

*

, passed to either of the tw
o functions,

w
orks fine.

L
ines 30-42: T

hese show
 5 equivalent w

ays to print the four
characters in the various strings. E

ach is printed w
ith a %

c

form
at, so the variable is supposed to be just of type char.

L
ines

31-32:
T

his
just

prints
the

four
array

elem
ents

in
a

straightforw
ard w

ay.
L

ines 33-34: T
his show

s that even for som
ething like p

 that w
as

declared of type
c
h
a
r

*

, the
[
] subscript notation still

w
orks (of course assum

ing that p
 has been initialized to the

address of an actual character string).
L

ines 35-38: T
his show

s the "pointer arithm
etic". G

iven
an

address like s
 or p, w

e can w
rite s

+
1

 or p
+
1

 for the next
item

 pointed to. (s or p
 is the address of the zeroth item

 in
the array, w

hile s
+
1

 or p
+
1

 points to the first item
, and

s
+
2

 or p
+
2

 is the address of the second item
, and so forth.

G
iven the address of som

ething, in C
, the *

 operator fetches
w

hat is at that address (w
e say "dereference"). T

hus s
[
0
]

is the sam
e as *

s
, and s

[
1
]
 is the sam

e as *
(
s
+
1
)

, s
[
2
]

is the sam
e as *

(
s
+
2
)

, and so forth. A
lso the sam

e is true
for p

. In fact, C
 just translates any expression like p

[
2
]

into the equivalent form
 *
(
p
+
2
). N

otice that *
p
+
2

 w
hich

is the sam
e as (

*
p
)
+
2

 is som
ething com

pletely different.
T

his last w
ill add 2

 to the value of *
p.

L
ines

39-42:
T

his
is

sim
ilar,

except
that

w
e

are
actually

increm
enting the value stored in p. H

ere w
e m

ust have a
variable like p that can be changed, rather than s. W

hen I
first w

rote this segm
ent, the w

hile loop w
as w

h
i
l
e
(
p

!
=

0
) instead of w

h
i
l
e
(
*
p

!
=

0
)

, w
hich is correct. (T

he
incorrect

version
produced

a
segm

entation
error.)

T

he
correct version lets p

 be increm
ented until it points to the

null character ’
\
0
’ at the end of the character array. W

e
can also w

rite w
h
i
l
e

(
*
p
). T

he incorrect version starts
w

ith an non-zero address stored in p
 and just increm

ents it
indefinitely, so of course it w

ill never be zero. N
otice that

this little segm
ent destroys the value of p

, since w
hen it is

done, p
 points to a null character, and the string is no longer

accessible
through

p

.

If
instead

w
e

w
rote

a
separate

function, w
ith p

 passed by value as a param
eter, then this

w
ould w

ork fine.
L

ines 43-45: T
his is the m

ost sophisticated code here.

T
he

declaration c
h
a
r

*
r; creates a location r

 that is ready to
hold the address of a char (of the starting address of a string).
Initially, r

 w
ill have useless garbage stored in it. T

he
function m

a
l
l
o
c

 allocates storage at run tim
e and returns

the address of this storage. m
a
l
l
o
c
(
s
t
r
l
e
n
(
s
)

+

1
)
;

w
ill allocate room

 for 5 characters in this case, enough for the
non-null characters in s, and one m

ore for the null. T
he

address of this storage is stored in the variable r
. T

hen, the
s
t
r
c
p
y

 function copies the characters in s into the new
storage in r

. (T
he ’

\
0
’

 at the end is copied also.) Finally,
r

 can be printed like any other string. T
his m

ethod of using
m
a
l
l
o
c

 is the m
ost com

m
on and flexible w

ay to w
ork w

ith
strings in C

.

