CS 1723, C Pitfalls, Fri Aug 28 1998, Pagel

CS 1723, C Pitfalls
Standard pitfalls:

1. Theequality operator is==, but the following islega C code:
if (x =y)
It assignsy to X, and theresult istrue unlessy isO.
Similarly, the statement
n == 10;
islegal: it just computes"n==10" as1 if nisequal to 10 and O otherwise. Then
the result is discarded.
2. The"r et ur n" statement returns from a function immediately.
3. If wewant afunction to return avalue in a parameter, we must pass the address, as
scanf ("% ", &n);
4. Functions with no parameters must still be called using empty parentheses, as
n=rand(); /* n =rand; is wong */
5. A semicolon after afor or while terminated the statement, as
for(i =0; i < 10; i++) ;
a[i] = 0;
Thisincrementsi to 10, and then attemptsto seta[10] = O.
6. Omitting abr eak after any but thelast case inaswi t ch statement.
7. In attempting to work with 2-dimensional arrays, the code below islegal C
int a[3, 3];
a[2, 1];
But it doesn't do what is intended, since the commais taken as the C comma
operator, and only 1-dimensional arrays result from this code.
8. Suppose we want to use areference parameter to count the number of timesa
functioniscalled. You might try this:
int i, j, count = O;
i = func(j, &count);
Andinsidef unc:
int func(int n, int *countp)

{

count p++; / incorrect */

}
Thisisincorrect, since the value at the address count p is fetched and discarded,
and then the address "count p" isincremented. The correct incrementing statement
must use extra parentheses:

(*count p) ++;
This increments the value at the address given by count p, which iswhat was
desired. There are many other places where parentheses are needed to avoid
problems with the precedence of operators. (This exampleis particularly confusing,
since the operators ++ and * (dereference) have the same precedence, but ++ applies
before * because the operators are applied right-to-left. However, the effect of the
++ only occurs after the value * count p isused.)

CS 1723, C Pitfalls, Fri Aug 28 1998, Page?

Related to Strings:

1.

Consider the declaration
char * cl, c2;
Thisdoes not declarec2 to bechar *, but justchar .

Given the declaration
char *cl, *cz;

one cannot compare the strings for equality using
cl == c2

but instead one must use
strcnp(cl, c2)

st r cnp returns O for a successful compare.

The character * \ n’ isnot thesameasthestring "\ n",andjustabare \ n is
illegal inside C code.

Strings must have the character * \ 0" at the end. Declarations for strings must
allow room for this character, so that in copying astring c 1, one would need to write
c2 = (char *) malloc(strlen(cl) + 1);
to allow enough room.
The standard copy sequence
while (*c2++ = *cl++) ;
is exactly the same as
strcpy(c2, cl);
incasecl and c2 arechar * parameters, but when embedded in code the while
loop leaves the pointers pointing past the proper beginning points of the strings.

Given an array declaration like
char c3[20];
¢ 3 givesthe address of the string and behavesin some wayslikeachar * pointer.
However, the array nameis not avariable, so that operations on ¢3 such as
c3 = cl;
or
C3++
areillegal.

In the segment

sprintf(str, "%", X);
it is not enough to declare

char *str;
but storage but be allocated for the actual string (enough for the spri nt f operation
and for the’ \ 0’ at the end).
Similarly, strcpy(str, "Harry"); would bewrong.
Suppose one wants to return a string as a reference parameter from a C function. A
Pascal programmer, thinking of strings as pointers and of reference parameters as
pointers also, might think that just achar * would work. However, an extralevel
of indirection is needed.

