(20)

(20)

(30)

(30)

(40)

(30)

1

2.

3.

4.

5.

6.

CS 1713, Intro. to CS, Final Exam, Tue Dec 10 1996, Page 1 of 3

CS 1713, Intro. to Computer Science

Final Examination
Give a C code segment that will read an integer n from st di n, and will print the numbers
from n- 1 to O (inclusive) to st dout , on one line, with a space between each number.
(Thusif 5isread, the numbers 4, 3, 2, 1, and 0 should be printed on oneline.)

Write a C code segment that will search for a zero value in the first 100 locations of an
array arr of doubl es. If a zero is found anywhere in the first 100 locations, your
segment should print " Zer o f ound". If there are no zeros in the first 100 locations, it
should print " No zer os".

doubl e arr[200];

(8 Writea complete C program which uses get char () to read the standard input until
end-of-file, counts the number of Ascii digits input (" 0’ through * 9’) and outputs the
number of digits. Your program should use the C library function i sdi gi t (), which
requires the <ct ype. h> header file. For a character stored in ch, i sdigit(ch)
returns a non-zero (true) if ch is an Ascii decimal digit character, and returns zero if not.
(You do not writethe codefor i sdi gi t () .)

(b) Assume the source program in part (a) iscalleddi gi t s. ¢c. Givethe Unix command
to compile this code to create an executable file named di gi t s. Give the Unix command
to use the di gi ts program to find the number of digits in the program source file
di gi ts. c itsdf.

Write a complete C program to calculate and print Fibonacci numbers. These numbers
startout O, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ..., where the sequence starts with O, 1, and
each subsequent number is the sum of the two previousones. (Thus34 =13+ 21.) Use an
arayint f[40]. Store0andl inpositionsf[0] andf[1] . Then use the property of
the sequence to calculate and store the proper number inf [2] through f [39] . Finaly,
print the forty numbers, oneto aline. (Y ou must use loopsto calculate and print.)

Write a complete C program that will play the game of "Chuck-O-Luck". First one must
determine a number to bet on. Let’s suppose your program always bets on 4. (Each time
you play the game, you will first bet on 4.) At each play, you then roll three dice, and
keeps track of each of therolls. If 4 comesup on all three dice, youwin $3. If 4 comes up
on only 2 of the dice, you win $2. If 4 comes up on only one of the dice, you win $1. If 4
doesn’t come up at al, then you win -$1, that is, you lose $1. Y our program should play
the game 1000 times. You should keep track of your total winnings for all of the games
and print thistotal at theend. (Thus if you roll 4-3-4, you win $2. If you then roll 2-5-1,
you lose $1. If you theroll 4-4-4, you win $3. Your total winnings for these three games
is: 2+ (-1) + 3 dollars. Notice that the number of dollars that you win is equa to the
number of times your number comes up on the three dice, unless it doesn’t come up at all,
in which case you lose adollar.)

Consider the following C program. This program does what is called a random walk in the
plane. It startswith a2-dimensional array of characters (75 on a side), and starts in at the
40th row and the 40th column. Then at each step, the program randomly moves to one of
the four positions horizontally or vertically from the given position. At each step it insertsa
* character, so that one can see where it has gone. The program stops when it gets to the

boundary.
/* Randomwal k in the plane. By NR Wagner */
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

CS 1713, Intro. to CS, Final Exam, Tue Dec 10 1996, Page 2 of 3

#i ncl ude <tine. h>
#def i ne MAXP 75

voi d bl ank_pl ane(char pl ane[MAXP] [MAXP]) ;
void one_step(int x, int y, int *new Xx, int *newy);
void print_plane(char plane[MAXP] [MAXP]);
voi d mai n(voi d)
{
char pl ane[MAXP] [MAXP] ;
int x =40, y =40; /* initial location */
int new x, new.y;
srand48((1 ong) ti me(NULL));
bl ank_pl ane(pl ane);
while(x >= 0 & X < MAXP && y >= 0 && y < MAXP)
plane[x][y] = "*";
one_step(x, y, &new x, &new.y);
X = new._x; y = new.y;

print_pl ane(pl ane);

voi d one_step(int x, int y, int *new x, int *new.y)
{
if (drand48() < 0.5) { /* change x */
*newy =y,
if (drand48()

0.5) *new x = x + 1.0;
el se *new x -1

<
X . 0;
else { /* change y */
*new x = X;
if (drand48()
el se *new.y =

0.5) *newy =y + 1.0;
-1

<
y . 0;

}
Sampl e output (first 35 lines omtted)

*
* ok ok ok ok

*ok ok ok ok /(starting position)
* % % * % % * % %

Kk kkkkkkkkk * %k %k %

* %k %k % * * % * %k %k %

* % % * % * % %

* *k kkkk*k

* % * %

*

* %k %k %

* % *

* ok ok ok ok
* ok ok ok ok
*k Kk kK

* ok ok ok ok * %
* ok ok ok ok khkkkkkk Kk
* * Kk ok khkkkkkk Kk *
* khkkkkhkkkkkkhkhkkhkhkk *
* % * Kk k Kk khkkkkhkkkkkhkkk **
kkkkkkkkk khkkkkhkkkkkhkkkkk*
khkkkkhkkkkhkkkkkkk* * Kk ok
khkkkkkkkkkk khkkkkkkKx
* ok ok ok ok * Kk k Kk * kkkkk
khkkkkkkkkkk kkkkkKkkkk
khkkkkkkkk*k * * ok ok ok kk
khkkkkhkkkkkkkkk* * * ok ok ok kk *ok ok ok kKk
khkkkkkkkk*k * kkkkkKkkkk * Kk ok * % * %
khkkkkhkkkkkkkkk *k*k *kkk kkkk kkkk kkkk * ok ok okkKk
kkk khkkkkkkkk kk*k * *okk ok k Kk khkkkkkkkk*k
khkkkkkkhkhkhkkk*x * * ok *kk kkk
kkkkkkkkkkkhk k% * Kk ok * Kk ok *
khkkkkkkkkhkk*k * * Kk k
khkkkkkkkkkk * ok ok Kk
kkkkkk K* * ok

* *

{

*

* %

* %

* %

*

* ok ok ok ok

* ok ok ok ok

* ok ok ok ok
* %
* %

\ (final

posi tion)

(@ Give the C code for the function bl ank_pl ane, which will set each character

location to a blank character.

(b) Givethe C codefor the functionpri nt _pl ane, which will print out the square array
with avertica line at the start and the end of each line, as shown above.

(c) Explain briefly how the program stops when it gets to the boundary

(d) Explain briefly how the function one_st ep is getting data back to the mai n function.

